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Abstract In this paper, we discuss some results

of decidability of annotated systems. The annotated

propositional logic P� and its S5 type modal exten-

sion S5� are shown to be decidable. These results

reveal that annotated systems are computationally

attractive as the foundations of paraconsistent rea-

soning.

Keywords: annotated logics, paraconsistent logics,

decidability.

1 Introduction

Annotated logics, as proposed by Subrahma-

nian [11], are a kind of paraconsistent and in

general paracomplete and non-alethic logics.

These systems were originally designed to give

the foundations of reasoning about inconsis-

tency. Another motivation in studying anno-

tated systems lies in some applications. Anno-

tated logics can be applied to many themes in

AI, Robotics and the theory of electronic cir-

cuit.

This paper discusses some results concern-

ing decidability of annotated systems. The

annotated propositional logic P� and its S5

type modal extension S5� are shown to be de-

cidable. These results reveal that annotated

systems are computationally attractive as the

foundations of paraconsistent reasoning.

2 Annotated Propositional

Logics P�

In this section, we introduce formally the para-

consistent annotated propositional logics P� .

A detailed account is to be found in da Costa,

Subrahmanian and Vago[9], da Costa, Abe and

Subrahmanian [8], Abe [1] and Abe and Akama

[3]. In this paper, we assume that if S is a set

then ]S indicates the cardinality of S. Other

usual terminology of naive set theory will be

employed without major comments.

The symbol � = hj � j;�;�i denotes some

�xed �nite lattice called lattice of truth-values.

We use the symbol � to denote the ordering in

which � is a complete lattice, ? and > to de-

note, respectively, the bottom element and top

element of � . Also, ^ and _ indicate, respec-

tively, the greatest lower bound and the least

upper bound operators with respect to subsets

of j�j. We also �x an operator �:j�j!j�j which
will work as the \meaning" of the negation of

the system P� . The language of P� has the

following (denumerable) primitive symbols.

1. Propositional symbols: p; q; r; :::.

2. Connectives, i.e. : (negation), ^ (conjunc-

tion), _ (disjunction) and ! (implication).

3. Each member of � is called an annotated

constant: �; �; �; :::

4. Auxiliary symbols: (, ).



Formulas are now de�ned as follows:

1. If p is a propositional symbol and � 2 � is

an annotated constant, then p� is an atomic

formula.

2. A and B are formulas, then :A;A^B;A_

B;A! B are formulas.

3. Only those expressions are formulas that are

determined to be so by means of conditions 1

and 2.

The atomic formula p� can be read \it is be-

lieved that p's truth-value is at least �". Let A

be a formula. Then, :0A is A, :1A is :A, and

:kA is :(:k�1A), where k � 0 is the natural

number. The convention is also used for �. If p

is a propositional symbol and � is an annotated

constant, then the formula of the form :kp� is

called a hyper-literal. A formula which is not a

hyper-literal is called a complex formula.

De�nition 2.1

Let A and B be formulas. Then we put

A$ B =def (A! B) ^ (B ! A)

and :
�
A =def A! (A! A)^ :(A! A).

The formula A $ B is read, as usual, the

equivalence of A and B. The operator :
�
is

called strong negation, so :
�
A must be read

the strong negation of A.

The postulates (axiom schemata and primi-

tive rules of inference) of P� are the following:

A;B, and C are formulas whatsoever, F and

G are complex formulas, p is a propositional

symbol, and �; �; �j are annotated constants.

(1) A! (B ! A)

(2) (A! (B ! C))! ((A! B)! (A! C))

(3) ((A! B)! A)! A

(4) A;A! B=B

(5) A ^ B ! A

(6) A ^ B ! B

(7) A! (B ! (A ^B))

(8) A! A _ B

(9) B ! A _B

(10) (A! C)! ((B ! C)! ((A_B)! C))

(11) (F ! G)! ((F ! :G)! :F )

(12) F ! (:F ! A)

(13) F _ :F

(14) p
?

(15) :kp� ! :k�1p
��; k � 1

(16) p� ! p�; � � �

(17) p�1^p�2^:::^p�m ! p�, where � =
Wm
i=1 �i

Theorem 2.2

In P� all valid formulas of the classical positive

propositional calculus are valid.

Theorem 2.3

In P� , :
�
has all properties of the classical

negation. For instrance, we have:

1. ` A _ :
�
A

2. ` :
�
(A ^ :

�
A)

3. ` (A! B)! ((A! :
�
B)! :

�
A)

4. ` A! :
�
:
�
A

5. ` :
�
A! (A! B)

6. ` A! (:
�
A! B)

Corollary 2.3.1

In P� , the connectives :
�
;^;_, and! have all

properties of the classical negation, conjunc-

tion, disjunction and implication, respectively.

Theorem 2.4

P� is non-trivial.

Proof: Let us consider the function � : F ! 2

such that it associates each hyper-literal the

value 1 and it extends to the remaining formu-

las according to the usual classical truth-tables.

We say that A is pseudo-true if �(A) = 1

and pseudo-false if �(A) = 0. It is immediate

to verify that all axioms are pseudo-true and

modus ponens preserves pseudo-truth. How-

ever, if F is a complex formula, we have

�(F ^ :F ) = 0.

De�nition 2.5

Let � be a set of formulas The syntactical

consequence of �, symbolized by ��, is the set
�� = fA 2 F j � ` Ag. If � = ��, then � is

called a theory. A set of formulas � is called

trivial if �� = F. Otherwise � is non-trivial.

Theorem 2.6

Let � be a non-trivial set of formulas. Then �

can be extended to a maximal (with respect to

inclusion of sets) non-trivial set with respect to

F.

Proof: Let � be any non-trivial subset of for-

mulas of F. To show that � can be extended to

a non-trivial maximal set, we construct a se-

quence �0;�1; :::;�n; ::: as follows. As the vo-

cabulary is composed by a denumerable set of

symbols, the set of formulas of F is denumer-

able. Let A1; A2; :::; An; ::: be an enumeration

of ther formulas of F. Let �0 = �, and in-

ductively construct the rest of the sequence by



taking �i+1 = � [ fAi+1g if this set is non-

trivial and otherwise by taking �i+1 = �. It

is easy to see that each set of the sequence

�0;�1; :::;�n; :: is non-trivial, and this is a non-

decreasing sequence of sets such that � � �0 �

�1 � ::: � �n � ::: We have that �� =
S
1

i=0 �i
is a non-trivial maximal set containing �. Each

�nite subset of �� must be contained in some �i
for some i, and thus must be non-trivial (since

�i is non-trivial). It follows that �� itself is

non-trivial. We claim that in fact that �� is

a maximal non-trivial set. For suppose A 2 F

and A 62 ��. As A is a formula of F, it must ap-

pear in our enumeration, say as Ak . If �[fAkg

were non-trivial, then our construction would

guarantee that Ak 2 �k+1, and hence that

Ak 2 ��. Because Ak 62 ��, it follows that

�k [ fAg is also trivial. Hence �� [ fAg is also

trivial. It follows that �� is a maximal non-

trivial set.

As � � �i, i 2 !, it follows that � � �� =
S
1

i=0 �i. On the other hand, suppose that �� =
S
1

i=0 �i is trivial. Thus, �� =
S
1

i=0 �i = F. It

follows that p�;:�p� 2 �� =
S
1

i=0 �i. As � is

�nite, we have that any application of modus

ponens has only a �nite number of premises.

Thus, there are n;m < ! such that p� 2 �n
and :�p� 2 �m. Therefore p�;:�p� 2 �n0 ,

where n0 = max(n;m). Thus �n0 is trivial,

which is a contradiction.

Theorem 2.7

Let � be a maximal non-trivial set of formulas.

Then

1. If A is an axiom of P� , then A 2 �.

2. A;B 2 � i� A ^ B 2 �.

3. A _B 2 � i� A 2 � or B 2 �.

4. If p�; p� 2 �, then p� 2 �. where � =

max(�; �).

5. :kp� 2 � i� :k�1p�� 2 �.

6. If A;A! B 2 � then B 2 �.

7. A! B 2 � i� A 62 � or B 2 �.

Proof: Let us prove only 4. In fact, from

p�; p� 2 � it follows that p�^p� 2 � by 2. But

it is an axiom of the form p� ^ p� ! p�, where

� = max(�; �). Thus, by 1 and 6 p� 2 �. The

remaining cases are proved as in the classical

cases.

Next, we describe a semantics for P� ; see

Abe [1] for details. We denote by P the set

of propositional symbols and by A the set of

atomic formulas, and by 2 the set f0; 1g.

De�nition 2.8

An interpretation (or P� -interpretation) is a

function I : P ! j� j. For an interpretation

I we can associate a valuation VI : F ! 2,

inductively de�ned by:

1. If p 2 P and � 2 j�j, then

1.1 VI(p�) = 1 i� I(p) � �.

1.2 VI(p�) = 0 i� it is not the case that I(p) �

�.

1.3 VI(:
kp�) = VI(:

k�1p��); k � 1.

2. If A and B are formulas, then

2.1 VI(A ^B) = 1 i� VI(A) = VI(B) = 1.

2.2 VI(A _B) = 1 i� VI(A) = 1 or VI(B) = 1.

2.3 VI(A! B) = 1 i� VI(A) = 0 or VI(B) = 1.

3. If F is a complex formula, then

3.1 VI(F ) = 1� VI(:�F ).

If VI(A) = 1 for a formula A, then we say that

VI satis�es A; similarly if VI(A) = 0, then we

say that VI does not satisfy A. If VI(A) = 1

for any I , then we say that A is valid, written

j= A.

Theorem 2.9

Let p be a propositional symbol and �; �; � 2j

� j. We have

1. j= p?.

2. j= p� ! p�, if � � �.

3. j= p� ^ p� ! p�, where � = � _ �.

Proof: 1. For any interpretation I , we have

I(p) � ?. Therefore j= p?.

2. Let us supposed that there exists a I such

that it is not the case that j= p� ! p�, that

is j= p� and it is not the case that j= p�. So,

I(p) � � and not I(p) � �, which contradicts

the hypothesis. Therefore, we have j= p� ! p�,

if � � �.

3. Similar to the preceding, using conditions

2.1 and 2.2 of De�nition 2.8.

Lemma 2.10

Let �0 =
W
f� 2j�j j` p�g. Then, ` p�0 .

Proof: The set f� 2 j� j j p� 2 �g is �nite:

f�1; �2; :::; �kg. Thus, ` p�1 ;` p�2 ; :::;` p�k .

So, ` p�0 .

Theorem 2.11 (Abe [1])

Let � be a maximal non-trivial set of formulas.

Then, the characteristic function � of �, that



is, �� : F! 2 is the valuation function of some

interpretation I : P!j� j.

Proof: Let us de�ne the function I : P ! j� j

putting I(p) =
W
f� 2j� j j p� 2 �g. Such a

function is well de�ned, so p? 2 �. Let VI :

F ! 2 be the valuation associated to I . We

have VI = ��. To show this, let p� 2 �. Thus

��(p�) = 1. On the other hand, it is clear

that I(p) � �. So, VI(p�) = 1. If p� 62 �,

��(p�) = 0. Also, it is not the case that I(p) �

�, because if so, that is, I(p) � �, we have

pI(p) 2 � (theorem), which is a contradiction.

Therefore, it is not the case that I(p) � �, and

thus VI(p�) = 0.

By theorem 2.7, :k
p� 2 � i� :k�1

p�� 2 �.

Thus, ��(:
k
p�) = ��(:

k�1
p��), where k � 1.

We will show that VI(:
k
p�) = ��(:

k
p�). We

proceed by induction on k. If k = 0, it is just

the previous case. Let us suppose that it is

valid for k � 1 (k � 1). Then, ��(:
k
p�) =

��(:
k�1

p��) = VI(:
k�1

p��) = VI(:
k
p�).

Now let A be a formula whatsoever. We pro-

ceed by induction on the number of occurrences

of connectives in A. Thus, suppose that

1. A is of the form :B. Due to the previous

discussion, we can suppose that B is a complex

formula. So, ��(B) = VI(B). If A 2 �, then

B 62 �, and ��(A) = 0 and ��(B) = 1. But,

VI(A) = 1� VI(B). Therefore, VI(A) = 0.

2. A is of the form B ^ C. A 2 � i� B;C 2 �.

Bu induction hypothesis, ��(B) = VI(B) and

��(C) = VI(C). Thus, ��(A) = VI(A).

The other cases are proved as in the classical

cases.

Theorem 2.12

Let � be a set of formulas and A a formula.

Then, if � j= A, then � ` A.

Proof: Suppose that it is not the case � ` A.

Thus, �0 = � [ f:�Ag is non-trivial. By

the previous theorem, �0 is contained in a

non-trivial maximal set �. Let VI : F ! 2

be the valuation obtained from �. We have

VI(A) = 1 � VI(:�A) = 0, which is a contra-

diction. Thus, � ` A.

Theorem 2.13

The logic P� is decidable.

Proof: Let A be a formula. By Sf(A) we de-

note the set of all subformulas of A. By At(A)

we denote the set of atomic subformulas com-

posing A. So, by using the valuation de�ned

above we can check in ]Sf(A)� ]At(A) steps

as in the classical case up to analyze ]At(A)

atomic formulas. The validity of each atomc

formula is checked in ] j� j times. So, At(A) is

checked in at most k] j�j ]At(A) times. In this

way, we can check whether A is logically valid

or not in a �nite numer of steps. Thus, P� is

shown to be decidable.

3 Annotated Modal Logics

Now we are concerned with annotated modal

systems. The �rst annotated modal system,

which is S5 type modal extension, was intro-

duced in Abe [2]. Later, annoated modal logics

were generalized by Akama and Abe [5]. Be-

low we show the decidability of S5� and the

given technique can be applied to other anno-

tated modal systems. The language of S5� has

primitive symbols of P� with the modal oper-

ator 2 (necessity operator). The possibility

operator 3 can be introduced by the following

de�nition:

De�nition 3.1

Let A be a formula. Then, we put

3A =def :�2:�2A.

The postulates (axiom schemata and rules of

inference) of S5� are those of P� , enriched

with

(1) 2(A! B)! (2A! 2B)

(2) 3A! 23A

(3) 2A! A

(4) A=2A

Here, (1) is the axiom K, (2) the axiom 5, and

(3) the axiom T . (4) is the rule of inference

called necessitation.

Theorem 3.2 (Abe [2])

In S5� all valid formulas of P� are also valid.

Theorem 3.3 (Abe [2])

S5� is non-trivial.

We next describe a Kripke semantics for

S5� .

De�nition 3.4

A Kripke model K for S5� is a tuple [W;R; I ]

where



W is a non-empty set of worlds,

R is a binary (equivalence) relation on W ,

I is an interpretation function I :W�P!j� j.

If w 2 W; p 2 P; � 2j � j, and I(w; p) � �,

we say that p� is true in the world w, and false

otherwise.

De�nition 3.5

If A is a formula of S5� and w 2 W , then

we de�ne the relation K;w j= A to mean K;w

forces A by induction on A as follows:

1. If p 2 P and � 2j� j, then

1.1 K;w j= p� i� I(w; p)� � (that is to say, p�
is true in the world w)

1.2 K;w j= :kp� i� K;w j= :k�1p
�� (k > 0)

2. If A and B are formulas, then

2.1 K;w j= A ^ B i� K;w j= A and K;w j= B

2.2 K;w j= A _ B i� K;w j= A or K;w j= B

2.3 K;w j= A ! B i� it is not the case that

K;w j= A, or K;w j= B

3. If F is a complex formula, then

3.1K;w j= :F i� it is not the case thatK;w j=

F

4. If A is a formula, then

4.1 K;w j= 2A i� K; v j= A for each v 2 W

such that (w; v) 2 R.

De�nition 3.6

Let K be a S5� -model. A Kripke model K

forces a formula A (in symbol K j= A), if

K;w j= A for each w 2 W . A formula A is

called S5� -valid, written j= A, if for any S5� -

model K;K j= A.

Theorem 3.7

Let K be a Kripke model for S5� . For all for-

mulas A;B of S5� we have

1. If A is a logically valid formula of P� , then

K j= A

2. If K j= A and K j= A! B, then K j= B

3. K j= 2(A! B)! (2A! 2B)

4. K j= 3A! 23A

5. K j= 2A! A

6. If K j= A then K j= 2A

In the proposed semantics, we can show that

there are systems S5� such that we have \in-

consistent" worlds, \paracomplete" worlds, or

both. Thus, S5� can be regarded as paracon-

sistent, paracomplete and non-alethic systems.

Theorem 3.8

Let U be a maximal non-trivial (with re-

spect to inclusion of sets) subsets of the set

of formulasF . Let A and B be formulas what-

soever. Then

1. If A is an axiom of S5� , then A 2 U .

2. A ^B 2 U i� A 2 U and B 2 U .

3. A _B 2 U i� A 2 U or B 2 U .

4. A! B 2 U i� A 62 U or B 2 U .

5. If p�; p� 2 U , then p� 2 U , where � =

max(�; �).

6. :kp� 2 U i� :k�1p
�� 2 U .

7. If A;A! B 2 U , then B 2 U .

8. A 2 U i� :
�
A 62 U . Moreover, A 2 U or

:
�
A 2 U .

Proof: Let us show only 5. In fact, if p�; p� 2

U , then p�^p� 2 U , by 2. But it is an axiom of

the form p�^p� ! p�, where � = max(�; �). It

follows that p� ^ p� ! p� 2 U , and so p� 2 U ,

by 7.

Given a set U of formulas, de�neU2 = fA j

2A 2 Ug. Let us consider the canonical model

Kc = [W c; Rc; V c], where W c = fU j U is a

maximal non-trivial setg, Ic : W c � P ! j� j,

de�ned by Ic(U; p) =def f� 2j� j j p� 2 Ug.

Such a function is well de�ned, so p
?
2 U .

Moreover, we de�ne Rc =def f(U; U 0) j U2 �

U 0g.

Lemma 3.9

For all propositional variable p, if U is a max-

imal non-trivial set of formulas, then we have

pI(U;p) 2 U .

Proof: It is a simple consequence of the item 5

of the previous theorem.

Theorem 3.10

For any formula A and for any non-trivial max-

imal set U , we have (K;U) j= A i� A 2 U .

Proof: Let us suppose that A is of the form

p� and (K;U) j= p�. It is clear by the pre-

vious lemma that pI(U;p) 2 U . It also follows

that I(U; p) � �. It is an axiom of the form

pI(U;p) ! p�. Thus, p� 2 U . Now, let us sup-

pose that p� 2 U . By the previous lemma,

pI(U;p) 2 U . It follows that I(U; p) � �. Thus,

by de�nition, (K;U) j= p�. By theorem 3.8,

:kp� 2 U i� :k�1p
�� 2 U . Thus, by de�ni-

tion 3.5, (K;U) j= :kp� i� (K;U) j= :k�1p
��.

So, by induction on k, the assertion is true for



hyper-literals. For the other cases, the proof is

similar to that of the classical case.

Corollary 3.10.1

For any formula A, j= A i� ` A.

In what follows, if K = [W;R; I ] is a Kripke

model for S5� , jK j indicates the number of

worlds ]W added with the number ]R.

Theorem 3.11

There is an algorithm that, given a �nite struc-

ture K, a world w 2 W , and a formula A,

can determine whether K;w j= A, in time

k jk j ] j�j ]Sf(A).

Proof: Let A1; A2; :::; Am be the subformulas

of A and Am = A if Ai is a subformula of Aj ,

where i < j. We can label each world in W

with Aj or :�Ai, for i = 1; 2; :::; k, by induction

on k, according if Aj is true or not in w, in time

ck jK j for some constant c. If Ak+1 is the form

2Aj , where j < k+1, we lable a world w with

2Aj i� each world w0 such that (w;w0) 2 R

is labeled with Aj or :�Aj . This step can be

clearly carried out in time m jKj ] j � j.

De�nition 3.12

A formula A is said to be a non-trivial formula

if it does not satisfy the condition that A;:A `
B for arbitrary formula B.

Theorem 3.13

If A is a non-trivial formula, then A is satis�-

able in a structureK with at most 22jAj worlds.

Proof: Let Sf(A)� = Sf(A) [ f:A ` A 2

Sf(A)g. Let Nt(A) be the set of maximal

non-trivial subsets of Sf(A)�. Each subset

of Sf(A)� can be extended to an element of

Nt(A). Moreover, a member of Nt(A) con-

tains at most 2 jA j elements. So the cardi-

nality of Nt(A) is at most 22jAj. We can thus

construct a structure KA = [WA; R; I ] simi-

lar to the theorem 3.10 except that we take

wA = fwv j v 2 Nt(A)g. We can then show

that if V 2 Nt(A), then for all B 2 Sf(A)� we

have (KA; wv) j= B i� B 2 V .

From theorems 3.11 and 3.13, the decidability

of S5� follows:

Theorem 3.14

The logic S5� is decidable.

4 Concluding Remarks

We have semantically established the decid-

ability of the propositional annotated logic P�

and its S5 type modal extension S5� . The de-

cidability of other modal systems can be ob-

tained in a similar way. However, if � is an in-

�nite lattice, resulting annotated systems are

generally undecidable. These results seem im-

portant since annotated systems are designed

to deal with many issues in computer science.

However, there are several open problems.

First, it is necessary to work out the so-called

�ltration to prove the decidability of modal sys-

tems. Because �ltration is studied for most

classical modal systems, it would be possible

to modify the existing methods for annotated

modal logics. Second, it is of interest to prove

the decidability theorem in a proof-theoretic or

algebraic manner. For this purpose, we need

to formulate a sequent calculus for annotated

systems. An algebraic proof of the decidabil-

ity of annotated systems could be developed

by using the technique in Abe [3]. Third, we

should investigate whether di�erent versions

of annotated logics are decidable or not. For

instance, generalized annotated logics of Kifer

and Subrahmanian [10] are based on rich alge-

braic structures on � . General annotated log-

ics of Sylvan and Abe [12] allow an annotation

at all levels; also see [7]. Akama and Abe [6]

proposed fuzzy annotated logics to model fuzzy

reasoning. In addition, we must search the de-

cidable classes of annotated predicate logics for

applications; see Abe [1, 4]. We hope to report

these issues in forthcoming papers.
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