
Resource-Bounded Reasoning and Paraconsistency

M. Allen
Department of Philosophy
University of Pittsburgh
Pittsburgh, PA, U.S.A.

R. E. Jennings
Laboratory for Logic & Experimental Philosophy

Department of Philosophy
Simon Fraser University
Burnaby, BC, Canada

Abstract Paraconsistent logic formalizes

reasoning from inconsistent information.

The preservationist variety of this logic con-

cerns itself with forms of reasoning that pre-

serve properties of information other than

those, like overall satisfy and consistency,

preserved by classical forms. The study of

computation and information processing in

the presence of inconsistency has utilized

paraconsistent logics, although not gener-

ally of the preservationist kind. We argue

that situations involving bounded resources

for computation can give rise to situations

that naturally call for preservationist para-

consistent reasoning. The point is illustrated

with reference to memory- and time-limited

systems, yielding approximate answers to

database queries.

Keywords: inconsistency, paraconsistent logic,
preservationist logic, resource-bounded reasoning,
databases

1 Introduction

The use of logic to represent reasoning, or at
least correct reasoning, can introduce a few
potentially problematic idealizations. First, it
is common, for reasons normative and practi-
cal, to represent reasoning as dealing always
with consistent information, despite the rar-
ity of such strict standards of rational hygiene
among actual reasoners. Second, logic tends to
bring with it notions of closure. Reasoners, for
instance, are pictured as believing the deduc-

tive closure of their beliefs—everything that
follows logically from those beliefs—despite the
fact that this closure is generally an infinite
collection, and reasoners are usually of finite
capacity.
While some AI researchers, like Wooldridge

[1], have accepted these idealizations, oth-
ers, like Russell and Wefald [2], have argued
that representations of reasoning, natural or
mechanical, must take account of limited re-
sources and bounds on computational power.
Too, the recognition that knowledge and infor-
mation are often inconsistent has led to interest
in logics that are non-classical. In fact, there
are important connections between these ideas.
Reasoners with imperfect, bounded capacities
may not be in any position to ensure that all
information with which they deal is consistent;
some inconsistencies will be obvious to them,
while others may be practically inaccessible. In
such cases, representations of reasoning need to
respect the difference between what is possibly
of interest to the reasoner, and what is beyond
the bounds of their capacities.

2 Paraconsistent logic

In its most general form, paraconsistent logic is
“the study of those logics which formalize non-
trivial inconsistent theories” (Da Costa and
Wolf [3]). Whereas inconsistency leads to infer-
ential profligacy in classical logic, and anything
follows from an inconsistency, paraconsistent
logics restrict the consequences of at least some
inconsistencies. Priest, Routley, and Norman



[4] provide a survey of a number of the ap-
proaches that fall under this general descrip-
tion. Among computer scientists, one of the
most influential such proposals has been the
4-valued logic of Belnap [5], in which a com-
puter assigns values to information in accord
with whether it has been told that the infor-
mation in question is true or false. Four pos-
sibilities arise since the computer may be told
that certain pieces of information are both true
and false, and may be told neither thing of
other pieces. A scheme like this is employed
in the paraconsistent logic programming of
Blair and Subrahmanian [6], to provide seman-
tics for inconsistent knowledge-bases. Multi-
valued models mean that meaningful queries
are possible, even where classical models of the
knowledge-base are unavailable.

2.1 Preservationist approaches

Multi-valued paraconsistency is common, but
is only one alternative. This approach ba-
sically extends the traditional idea that log-
ical reasoning preserves the truth of sets of
premises, by extending the semantics to sat-
isfy inconsistencies—things that were once un-
satisfiable. “Good” forms of reasoning are still
those that preserve satisfiability, even if sat-
isfaction is now something other than it was
in the classical context. Preservationist logic
takes a broader view of what may be preserved
of sets of sentences. Preservationists may want
to preserve what satisfiability there is, but, es-
pecially where there is no such thing on offer,
will seek to preserve other things as well.
Preservationist inquiry proceeds in one of

two directions: on the one hand, it exam-
ines various of the properties possessed by
information, and looks for logical means of
preserving them; on the other hand, it con-
siders consequence- and implication-relations,
and asks what properties they might preserve.
An early example of the approach is found
in Schotch and Jennings [7], who focus on
the preservation of “level of coherence,” mea-
sured by the number of times a set need be
partitioned to yield classically consistent sub-

parts. Other work focusses on other properties.
Thorn [8] deals with preserving “dilution” of
inconsistency, marked by the size of the small-
est inconsistent subset. Brown [9] and Allen
[10] measure levels of ambiguity for sets of sen-
tences, and examine logics that preserve mini-
mal levels of same.
In each case, a measure is established. Some

sets possess the measure property to a greater
or lesser degree than others, and it is estab-
lished which of these conditions is more desir-
able. The preservationist logician then works
to establish means of preserving the desirable,
and fending off the undesirable. While classical
logic preserves the satisfiability of a set of sen-
tences, and holds off inconsistency, so long as
the set is already satisfiable and entirely con-
sistent, a coherence-level-preserving logic pre-
serves a certain degree of consistency, so long as
a set already possesses that much. Recognizing
the variousness of the properties of informa-
tion that one might care to maintain, preserva-
tionism expands the logical horizon. Jennings,
Chan, and Dowad [11] argue that this approach
provides a broad understanding of “inference,”
of interest to computer scientists so far as they
are concerned with modes of reasoning in spe-
cialized domains, and so with a range of dis-
tinct properties of information.

3 Bounded reasoning and in-
consistency

Logical models of reasoning often build in the
presumption that reasoners are infinite in ca-
pacity; however, Real-world analogues of rea-
soning, of which computation is an example,
will involve reasoners with finitely bounded
capacities. Indeed, some contexts, particu-
larly where machine reasoning is concerned,
impose strict limits on capacity, limits well be-
low even what might be desired. Systems oper-
ating with restricted memory or limited time,
for example, may not have the resources to
provide strictly optimal performance. Given
such bounds, useful forms of reasoning may
well differ from those associated with the lim-



itless case. Research in resource-bounded rea-
soning studies such situations. Generally, a
resource-bounded reasoner will need to per-
form, not perfectly, but as well as can be
expected. Standards of success are set, and
systems are designed so that performance in-
creases along with availability of resources. As
Zilberstein [12] has it, it still makes sense to
speak of conformity to rational standards in
the presence of limits—rather than identify ra-
tionality with optimality tout court, it is iden-
tified with optimality within bounds.
Work on knowledge-base reasoning has

taken account of the problems posed by both
inconsistent information and bounded perfor-
mance. As noted, paraconsistent logic pro-
gramming has provided multi-valued semantics
for inconsistent knowledge-bases. Too, Vrbsky
and Liu [13] have developed a system for han-
dling approximate database queries that gives
inexact answers, but tends toward correctness
as time and other resources increase. It is
interesting to combine these concerns, since
real-world systems are likely both to be lim-
ited in capacity, and to be dealing with in-
consistent information. While one approach
provides a paraconsistent semantics for an en-
tire knowledge-base where inconsistency arises,
systems with limited resources may never deal
with the knowledge-base as a whole. In such
cases, only certain sorts of inconsistency are
salient. Where a system has the resources to
examine an entire database together, and to
perform all logical operations on it, the pres-
ence of inconsistency may well be dealt with
using one of the multi-valued paraconsistent
alternatives. In such a system, we generally
have the full range of usual rules for infer-
ence and for manipulating expressions of the
language. A typical rule is adjunction: con-
junctions of any two expressions implied by
the knowledge-base are also implied by the
knowledge-base. In a system that can only ac-
cess a limited portion of the knowledge-base at
any one time, however, such a rule may not
be realistic. While an accessible portion of
the information implies some expressionA, and
another accessible portion implies another ex-

pression B, there may be no such single portion
that implies both A and B; in such a case, a
general adjunction-introduction rule no longer
reflects the sorts of outputs actually produced
by the limited system. Similarly, not all in-
consistencies are equal—some are more readily
accessible than others. To use a toy example,
consider the the simple sets { p, p → q, ¬q }
and { p, p → q, q → r, ¬r }. While both are
classically inconsistent, inconsistency is more
easily accessible in the first case than the sec-
ond, since the first only uses three sentences
to generate the contradiction, whereas the sec-
ond uses four. Similar cases arise on a larger
scale for systems that access only a portion of
a knowledge-base at a time; certain inconsis-
tencies may be “visible” only at scales greater
than those available to the system.

4 Level and dilution preserva-
tion

Recognizing the differences between varieties of
inconsistency just mentioned, we are interested
in preservationist forms of reasoning that take
them into account. Two properties of interest
are level of coherence and dilution of level.

4.1 Level of coherence

Level of coherence (or simply “level”) for a
set of sentences is the size of the least par-
tition (if there is any such) of the set into
classically-consistent parts. We define a par-
tition as follows: for any set Σ, the set of sets
π = { a1, a2, . . . , an } is a partition of Σ, writ-
ten Part(π,Σ), just in case each “cell” ai ∈ π
is a subset of Σ, the cells do not intersect, and
together they cover Σ. That is, Part(π,Σ) iff:

1. ∀ai ∈ π, ai ⊆ Σ.

2. ∀ai, aj ∈ π, (ai �= aj)⇒ (ai ∩ aj) = ∅.

3.
⋃{ ai | ai ∈ π } = Σ.

We can now define the collection of n-partitions
of a set Σ, written Πn(Σ), as the set of parti-



tions of Σ of size n: ∀n (1 ≤ n ≤ ω),

Πn(Σ) = {π | Part(π,Σ) & ‖π‖ = n }
The level of coherence for set of sentences

Σ is defined as the minimal value n such that
there is some partition π ∈ Πn(Σ) whose cells
are all classically consistent. We express con-
sistency using the notion of implication and an
arbitrary absurdity, ⊥. For any sentence α, ⊥
implies α, written ⊥ � α. Similarly, a set Σ is
classically inconsistent if and only if it Σ � ⊥;
consistency is expressed by denying the impli-
cation, Σ � ⊥. We say that the level of coher-
ence of Σ is n, written l(Σ) = n, if and only if
n is the least value such that

∃π ∈ Πn(Σ) : ∀a ∈ π, a � ⊥.
If ⊥ ∈ Σ, then there does not exist any such
value of n, and we say Σ has no measurable
level, assigning l(Σ) = ∞, an arbitrarily high
value. If Σ is already classically consistent,
then l(Σ) = 1. Finally, the level of Σ, if mea-
surable, is always less than or equal to the size
of Σ itself, since for any value n, 1 ≤ n ≤ ω, it
takes at least n members to create a set that
can be partitioned into n cells.
Examples: The set Σ = { p, ¬p, q } has
l(Σ) = 2. The set ∆ = { p∧ q, ¬p∧ q, p∧¬q }
has l(∆) = 3.

4.2 Dilution of level

We now define a companion notion, the dilu-
tion of level for Σ. For set Σ, and measurable
level n, dilution of level-n of Σ, written dn(Σ),
is the size of the smallest subset of Σ having
level n (if any such exists). That is, dn(Σ) = m
if and only if m is the least value such that

∃Σ′ ⊆ Σ: l(Σ′) = n & ‖Σ′‖ = m.

Note that for any value of n, 1 ≤ n ≤ ω, and
any set Σ, if l(Σ) = n, then for all n′, 1 ≤ n′ ≤
n, there exists some m such that dn′(Σ) = m.
For values n > l(Σ), dn(Σ) is undefined.
Examples: The set Σ = { p, p → q, ¬q } has
d2(Σ) = 3. The set ∆ = { p∧q, ¬p∧q, p∧¬q }
has d3(∆) = 3 and d2(∆) = 2.

As the first of these examples shows, dilu-
tion of level-n can be greater than n itself. In-
deed, n provides but a lower bound. For any
measurable value, dn(Σ) ≥ n. Furthermore,
all possible combinations of measurable level
and dilution exist; for any measurable level
n, and any m ≥ n, some Σ exists such that
dn(Σ) = m. Thorn [8] provides a schema for
generating sample instances. Measurable dilu-
tion values are also ordered in accordance with
level. For any Σ, for measurable levels n and
n′, if n′ < n then dn′(Σ) < dn(Σ).

4.3 Preserving level and dilution

There are any number of strategies preserving
level of coherence, but perhaps the simplest
also involves set-partitions. If l(Σ) = n, we
can preserve that value by adding back to Σ
those sentences that follow classically from ev-
ery n-partition. That is, Σ n-forces α, written
Σ [�n α, if and only if

∀π ∈ Πn(Σ), ∃a ∈ π: a � α.

Clearly, n-forcing preserves level n. If l(Σ) =
n, and Σ n-forces α, then l(Σ ∪ {α}) = n as
well. This follows since, if l(Σ) = n, then
there exists some n-partition of Σ, call it π�,
into n classically-consistent parts. If α is n-
forced by Σ, then α follows from some cell of
every n-partition of Σ, including π�. If cell
a� ∈ π� classically implies α, then we know
that (a� ∪ {α}) must be classically consistent.
So, there exists a partition of (Σ ∪ {α}) into
n consistent cells, namely the n cells of the
partition π�, with α added into a�. That is,
l(Σ∪{α}) = n, and n-forcing preserves level n.
Finally, note that if l(Σ) = 1, and the set is al-
ready classically consistent, n-forcing is equiv-
alent to classical implication: Σ[�1 α ⇔ Σ � α.
In the case of dilution of level, the point is

to keep dilution from decreasing. A dilution-
preserving strategy will ensure that anything
added to Σ will do nothing to make the in-
consistency of Σ more concentrated. In this
connection, note that adding α to Σ decreases
dn(Σ) only by increasing level for some proper



subset. That is, if dn(Σ ∪ {α}) < dn(Σ) then
there is some m such that

dn(Σ) = m & ∃Σ′ ⊂ Σ:
‖Σ′‖ ≤ (m − 2) & l(Σ′) < l(Σ ∪ {α}).

To see this, note that dn(Σ ∪ {α}) < m only
if some subset Σ′ ⊂ (Σ ∪ {α}) has level n and
size less than m; that is, ‖Σ′‖ ≤ (m − 1). Fur-
thermore, we know that α ∈ Σ′, since other-
wise the n-dilution of Σ would have been lower
than m in the first place. So, we know that
‖(Σ′−{α})‖ ≤ (m−2). As well, we know that
l(Σ′−{α}) must be less than n, again because
we already have that dn(Σ) = m, and the size
of the subset is less than m.
Given these facts, it follows that for any set

Σ such that dn(Σ) = m, we can preserve the
value for n-dilution by preserving the level of
every subset with less than m members. In
fact, since the the level of a set is always greater
than or equal to the level of any of its subsets,
it suffices simply to preserve the level of ev-
ery (m − 1)-membered subset; and, since we
already have a strategy for preserving level of
sets, we easily arrive at a way of preserving di-
lution of level. We know, then, that α does not
decrease the dilution of level n for any Σ such
that dn(Σ) = m if α is (n − 1)-forced by every
(m − 1)-membered subset of Σ. That is, if
1. dn(Σ) = m, and

2. ∀Σ′ ⊂ Σ, ‖Σ′‖ = (m − 1)⇒ Σ′ [�n−1 α,

then dn(Σ ∪ {α}) = m, as well.

5 Applications

We can apply these results to problems faced
by bounded reasoners in the context of incon-
sistent knowledge-bases. We have devised a
resource-bounded reasoning procedure for use
with a system with strictly limited, and fixed
memory. The sort of system in question has
been tested on randomly-generated knowledge-
bases, using a simple database language, in
which each expression is a disjunctive Horn-like
sentence. Upon request, the system queries the

database, but can only access sub-portions of
the database at a time; this portion is deter-
mined in advance as a bound p on the num-
ber of sentences from the knowledge-base that
can be processed together at any one time.
In addition, the sentences which the system
can process are strictly limited in length, again
by fixed memory constraints. In this system,
then, arbitrary adjunctions of sentences are not
possible, since the system cannot process many
of the expressions resulting from application of
such a rule. Thus, the system is also strictly
bound, again by value p, as to the salient con-
centration of inconsistency. So long as a partic-
ular level of coherence is concentrated enough
to be evident in some collection of sentences of
size p or less, the system can ensure that the
given level does not become any more concen-
trated. In certain measurable respects, then,
the system works to ensure that its knowledge-
base does not become any more inconsistent
than it already is: queries are answered in the
affirmative only if the response does not de-
crease the dilution of a given level of coherence.
Because the system operates also under pos-

sible time-constraints, it performs its query-
response function by way of anytime algo-
rithms. These sorts of algorithms, as detailed
in Zilberstein [14], can yield results at any time
during operation. While results improve over
time, approximate answers are available at any
time after passage of a short initial interval. In
our system, the computer first runs the query
on the initial p sentences in its database, using
resolution methods. For sake of illustration,
suppose that we wish accessible segments of
our database ∆ to be entirely consistent. That
is, we want that d2(∆) > p: all inconsistent
segments of the database are larger than p in
size. Results of the prior sections indicate that
this condition can be maintained if every seg-
ment of ∆ that is of size p or smaller be kept at
level one. Since our computer can access seg-
ments of size p, it suffices to 1-force from each
of these segments, which is to say take what
follows by classical methods from each and ev-
ery one of them. However, we do not know in
advance whether or not the dilution of level for



our database actually is greater than p. This
being so, we require that the computer try to
answer queries in such a way that it would pre-
serve the requisite dilution, so long as the right
conditions already existed; at the same time,
and so far as it can, it checks whether the in-
consistency present already falls outside of ac-
ceptable bounds.
The system, as mentioned, can be inter-

rupted at any point in its progress through
the database ∆. In the meantime, it runs
the query on each p-membered segment of ∆
in turn, first determining whether the query-
expression is implied by the segment, and then
determining whether the negation of the ex-
pression is implied by the same segment. If
the answer to the first question is yes, this an-
swer is stored as the final result of the query,
to be returned whenever the program termi-
nates or is interrupted. As time goes on, and
more and more of the segments of the database
are queried, the answer tends ever more gradu-
ally toward correctness. The current degree of
correctness can be measured straightforwardly
in terms of the probability that the answer is
correct, given how many of the p-membered
segments of the database have been examined;
as required, this value increases monotonically
with time of processing. If at any point some
segment does not imply the query-expression,
then the program will cease operation, return-
ing a negative response to the query, since we
are only here interested in expressions implied
by every one of the p-membered subsets, in or-
der to retain a dilution equal to p+ 1. (There
is a less strict strategy that also results in the
same preservation, that only requires one such
subset to imply the query-expression, but we
are not here directly concerned with that idea.)
Finally, if the machine ever derives both the
query-expression and its negation from a sin-
gle p-membered subset of the database, then
it also halts, returning the result that, in this
case, the database already has a dilution of in-
consistency below the value p; it is then up
to the user to decide whether or not the con-
dition is tolerable, and revise the database if
necessary. Again, the performance of this de-

tection function also improves monotonically
over time; as the machine handles more and
more of the requisite subsets of the database
without finding an impermissible degree of in-
consistency, it becomes more and more likely
that the database as a whole actually has the
demanded level and dilution.
We only mean to sketch the behaviour of the

system here, but we note some important fea-
tures. First, while the example just considered
is one in which we insist upon consistency of
all p-membered subsets of the database, other
possibilities are open to us. For any level of
coherence less than or equal to p, the size of
our working memory, and for any possible di-
lution of that level, the system can work to
preserve the requisite dilution of level, by em-
ploying the right sort of forcing operation over
the appropriate range of subsets of each seg-
ment. In each case, if the level is set to be
n ≤ p, then we can also fix dilution of level
at any value m, n ≤ m ≤ p+ 1; by employing
(n−1)-forcing on every (m−1)-membered sub-
set of the database, we ensure that dn(∆) > m.
This opens the door for a wide range of pos-
sibilities when it comes to processing of incon-
sistent information. Standards for tolerable in-
consistency can be set, and maintained, up to a
degree strictly bounded by the size of working
memory p, and these standards can be met up
to a degree related to the amount of time avail-
able for processing. At the same time, we note
that the amount of processing required can de-
pend rather heavily on the differences between
the size of the available memory p and the size
of the database as a whole. If p is significantly
less than the size of the whole base ∆, and
the size of ∆ is quite large, computation of an
exact answer to the query and detection of im-
permissible inconsistency become intractable,
since the machine must always process

(
q
p

)
sub-

sets, where q is the size of the database as a
whole. Similarly, as the potential level of the
p-membered subsets increases, the problem of
combinatorial explosion again rears its head,
as n-forcing also requires the computer to sur-
vey ever-increasing numbers of partitions. Our
anytime system has the advantage of always



being able to return at least approximate an-
swers, but the horizon on which the correct
answers are met tends to recede rapidly. The
relation between these various values and mea-
sures, and the resources necessary for dealing
with them, demands further study.

6 Conclusions

Research in logics that preserve various prop-
erties of sets of sentences has direct connection
to research in machine reasoning. By studying
ways in which we can measure of inconsistency
in information, and preserve same, we find new
strategies for mechanical reasoning in the pres-
ence of such inconsistency. So far as dilution of
level corresponds to the degree to which incon-
sistency can become salient to a reasoner, re-
search into the property and its preservation is
of particular interest in connection with ques-
tions of bounded reasoning.

References

[1] Michael Wooldridge. Reasoning About Ra-
tional Agents. MIT Press, Cambridge,
Massachusetts & London, England, 2000.

[2] Stuart Russell and Eric Wefald. Do the
Right Thing: Studies in Limited Ratio-
nality. MIT Press, Cambridge, Mas-
sachusetts & London, England, 1991.

[3] Newton C. A. da Costa and R. G.
Wolf. Studies in paraconsistent logic I.
Philosophia, 9:189–217, 1980.

[4] Graham Priest, R. Routley, and J. Nor-
man, editors. Paraconsistent Logic: Es-
says on the Inconsistent. Philosophia Ver-
lag, Munich, 1989.

[5] Nuel D. Belnap, Jr. A useful four-valued
logic: How a computer should think. In
Alan Ross Anderson, Nuel D. Belnap, Jr.,
and J. Michael Dunn, editors, Entailment:
The Logic of Relevance and Necessity, vol-
ume II, pages 506–541. Princeton Univer-
sity Press, Princeton and Oxford, 1992.

[6] Howard A. Blair and V. S. Subrahmanian.
Paraconsistent logic programming. The-
oretical Computer Science, 68:135–154,
1989.

[7] Peter K. Schotch and R. E. Jennings. On
detonating. In Priest et al. [4], pages 306–
327.

[8] Paul D. Thorn. The normative charac-
ter of interpretation and mental expla-
nation. Master’s thesis, Simon Fraser
University, Burnaby, British Columbia,
Canada, 1998.

[9] Bryson Brown. Yes, Virginia, there re-
ally are paraconsistent logics. Journal of
Philosophical Logic, 28:489–500, 1999.

[10] M. Allen. A paraconsistent-preservation-
ist treatment of a common confusion con-
cerning predicate extensions. In B. Brown
and J. Woods, editors, Logical Conse-
quences (Proceedings of the SEP Annual
Conference, 1999). Hermes Science Pub-
lishing, forthcoming.

[11] R. E. Jennings, C. W. Chan, and M. J.
Dowad. Generalised inference and inferen-
tial modelling. In Proceedings of the 12th
International Conference on Artificial In-
telligence, pages 1046–1051, 1991.

[12] Shlomo Zilberstein. Models of bound-
ed rationality. Unpublished (available
at anytime.cs.umass.edu). Presented at
the AAAI Fall Symposium on Rational
Agency, Cambridge, Massachusetts, 1995.

[13] Susan V. Vrbsky and Jane W. S.
Liu. APPROXIMATE—A query proces-
sor that produces monotonically improv-
ing approximate answers. IEEE Trans. on
Knowledge and Data Engineering, 5:1056–
1068, 1993.

[14] Shlomo Zilberstein. Using anytime algo-
rithms in intelligent systems. AI Maga-
zine, pages 73–83, 1996.


