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Abstract We introduce a declarative semantics

for extended logic programs, and demonstrate its

usefulness for reasoning with uncertainty. We show

that this is a robust formalism that overcomes some

drawbacks of related �xpoint semantics for incom-

plete or inconsistent logic programs.
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1 Introduction

It is well-known that the restricted syntacti-

cal structure of standard logic programs1 limits

their expressive power. This means, in partic-

ular, that it is not possible to properly rep-

resent uncertain information (e.g., contradic-

tions or partial knowledge) by such programs.

The standard way of dealing with this prob-

lem (in the context of logic programing) is to

consider extended logic programs, in which two

kinds of negation operators may appear in the

clause bodies, and one of them may also appear

in the clause heads. It is usual to intuitively

refer to one of these operators (denoted here

by :) as representing explicit negative infor-

mation. The other negation operator (denoted

here by not) is intuitively related to a more im-

plicit negative data, and it is often associated

with a \negation-as-failure" (to prove or verify

the corresponding assertion on the basis of the

available information).

1I.e., set of clauses of the form p l1; : : : ; ln where

p is an atomic formula and l1; : : : ; ln is a conjunction of

literals.

Example 1 Let p; q; r be atomic formulae,

and let t be a propositional constant that rep-

resents true assertions. Consider the following

extended logic program:

P = fq  t; p t; p r; :p not :qg

Intuitively, P may be understood such that

both p and q are known to be true, p is de-

�ned in terms of r (where no information is

available about r), and :p holds provided that

the negation of q cannot be shown. In this in-

terpretation, P clearly lacks any information

about r, and it contains inconsistent informa-

tion regarding p. Thus, a plausible formal-

ism for reasoning with P should not assume

anything about r, and (unlike classical logic)

should not give P a trivial semantics. That

is, despite the contradictions in P, not every

formula may be inferred from it.2

Example 1 shows that an adequate formal-

ism for giving semantics to extended logic pro-

grams must be paraconsistent [11], that is, in-

consistent information should not entail ev-

ery conclusion.3 The next example shows that

the underlying formalism should also be non-

monotonic (i.e., capable of changing the set of

conclusions according to new data).

Example 2 Consider again the logic program

P of Example 1, and suppose now that a new

datum arrives, which indicates that if p holds

then :q must hold as well. The new program

is therefore P 0 = P [ f:q  pg. Now, the

2For instance, it is quite obvious that none of :q, r,

or :r should follow from P.
3See [9] for a survey on paraconsistent systems.



information regarding p becomes consistent (as

the condition for concluding :p does not hold

anymore), while the data regarding q turns to

be inconsistent (and the data regarding r re-

mains incomplete). A non-monotonic formal-

ism should adapt itself to the new situation. In

particular, while the query :p should succeed

w.r.t. P, it should fail w.r.t. P 0.

In this paper we introduce a paraconsis-

tent and non-monotonic declarative semantics

for extended logic programs. For this we use

Belnap's four-valued structure [6, 7], which is

particularly useful for our purpose, since in

addition to the \standard" classical values it

also contains two other values for designating

the two kinds of uncertainty mentioned above,

namely: partial information and contradictory

data. We show that the outcome is a �xpoint

semantics for extended logic programs that is

capable of pinpointing the incomplete and in-

consistent parts of the data, while the remain-

ing information may be regarded as classically

consistent. 4

2 Four-valued semantics

As we have noted above, our formalism is based

on four-valued semantics. Reasoning with four

truth values may be traced back to the 1950's

[8, 16]. Here we use Belnap's four-valued al-

gebraic structure FOUR, introduced in [6, 7].

This structure consists of four elements: two

elements (t; f) that correspond to the classical

truth values, an element (?) that intuitively

represents lack of information, and an element

(>) that may intuitively be understood as rep-

resenting contradictions. These elements are

simultaneously arranged in two partial orders.

In one of them (denoted here by �t), f is the

minimal element, t is the maximal one, and

?;> are two intermediate values that are in-

comparable. This partial order may be intu-

itively understood as representing di�erences

in the amount of truth of each element. We de-

note by ^ and _ the meet and join operations

4Due to a lack of space proofs are omitted here. Full

proofs appear in [1].

w.r.t �t. In the other partial order (denoted

here by �k), ? is the minimal element, > is

the maximal one, and t; f are two intermediate

values. This partial order intuitively represents

di�erences in the amount of knowledge (or in-

formation) that each element exhibits. We de-

note by 
 and � the meet and join operations

w.r.t �k. A negation operator : on FOUR re-

verses the �t-order and preserves the�k-order,

thus :t=f , :f= t, :?=?, and :>=>.

A double-Hasse diagram of FOUR is shown

in Figure 1.
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Figure 1: FOUR

The various semantic notions are de�ned on

FOUR as natural generalizations of similar

classical ones: a valuation � is a function that

assigns a truth value in FOUR to each atomic

formula. In what follows we shall sometimes

write � = fp : x; q : yg instead of �(p) = x,

�(q) = y. Any valuation is extended to com-

plex formulae in the obvious way. The set of

the four-valued valuations is denoted by V 4.

The set of the designated truth values in

FOUR (i.e., those elements in FOUR that

represent true assertions) is D=ft;>g. A val-

uation � satis�es a formula  i� �( ) 2 D.

A valuation that assigns a designated value to

every formula in a theory P is a model of P.

The set of all the models of P is denoted by

mod(P). The syntactical form of the formulae

in P is the following:



De�nition 3 In what follows p; q; r denote

atomic formulae, l; l1; l2; : : : denote literals (i.e.,

atomic formulae that may be preceded by :),

and e; e1; e2; : : : denote extended literals (i.e.

literals that may be preceded by not). The

complement of a literal l is denoted by l. An ex-

tended clause is a formula l e1; : : : ; en where

n� 0. A (possibly in�nite) set P of extended

clauses is called an extended logic program.5 A

clause (respectively, a set of clauses) without

the operator not is called a general clause (re-

spectively, a general logic program).

Let P be a general logic program. The

meaning of conjunctions (;) and negations (:)

is determined, respectively, by the �t-meet

and the negation operator on FOUR.6 This

corresponds to the natural extensions for the

multiple-valued case of the 2-valued interpre-

tations of these connectives. However, this

should not be the case with implication: as

observed in [5, 15], in the context of multiple-

valued semantics the material implication does

not properly represent entailment. We there-

fore consider an alternative de�nition for the

implication connective (see [1, 2] for a justi�-

cation of this de�nition):

De�nition 4 [2, 4] Let x; y2FOUR. De�ne:

x y = x if y2D, and x y = t otherwise.

We conclude this section by de�ning two

useful order relations on the models of a pro-

gram P.

De�nition 5 A valuation �1 2 mod(P) is k-

smaller than another valuation �2 2 mod(P)

if for every atomic formula p, �1(p) �k �2(p).

�2mod(P) is a k-minimal model of P if there

is no other model of P that is k-smaller than

�.

De�nition 6 [2, 3] A valuation �1 2 mod(P)

is more consistent than another valuation �2 2

5Some formalisms also allow the appearance of im-

plicit negations in the clause heads of extended logic

programs; see e.g. [12] for a discussion on possible ways

to understand default negation in the clause heads.
6We shall discuss the meaning of the negation as

failure operator not in what follows.

mod(P) if fp j �1(p) =>g � fp j �2(p) =>g.

� 2 mod(P) is a most consistent model of P

if there is no other model of P that is more

consistent than �.

3 Paraconsistent �xpoint se-

mantics

We are now ready to introduce our �xpoint

semantics for logic programs. First, we treat

general logic programs (i.e., programs without

negation-as-failure), and then we consider ex-

tended logic programs.

3.1 General logic programs

De�nition 7 Given a general logic program

P, de�ne for every i�1 and every literal l,

�
P
0
(l) = ?.

val
P
i (l) =

8
><
>:

t if there is a l Body 2 P

s.t. �P
i�1

(Body) 2 D, 7

? otherwise.

�
P
i
(l) = val

P
i (l)� :val

P
i (l).

For a limit ordinal � we de�ne

val
P
�
(l) = max�k

fval
P
�
(l) j �<�g,

�
P
�
(l) = val

P
�
(l)� :valP

�
(l).

For a propositional constant x2ft; f; c; ug that

is respectively associated with an element x2

ft; f;>;?g in FOUR, we de�ne

�
P
i
(x) = val

P
i (x) = x (i = 0; 1; : : :).

Note that �
P
i

behaves as expected w.r.t.

negation: since :(x � y) = :x � :y for ev-

ery x; y 2 FOUR, we have that

:�
P
i
(l) = :(valPi (l)� :val

P
i (l)) =

= :valPi (l)� val
P
i (l) = �

P
i
(l).

Proposition 8 Let P be a general logic pro-

gram. Then the sequence �
P
0
; �

P
1
; : : : is �k-

monotonic in V4.

7Note that �
P
j (Body) =

V
li2L(Body)

�
P
j (li), thus

�
P
j (Body) 2 D i� 8li2L(Body) �

P
j (li)2D.



By Knaster-Tarski theorem [23], it follows

from Proposition 8 that the sequence f�P
i
g has

a �k-least �xpoint. Denote this �xpoint by �
P .

An induced consequence relation j�� may now

be de�ned as follows: P j��  i� �
P( ) 2 D

(Thus, a formula  follows from a logic pro-

gram P, if �P( ) is designated).

Proposition 9 Let P be a general logic pro-

gram. Then �
P is the k-minimal four-valued

model of P. Moreover, it is at least as con-

sistent as any other model of P, and the con-

sequence relation j�� that is induced by it is

non-monotonic and paraconsistent.

Corollary 10 Let P be a general logic pro-

gram. Then:

a) �P is the k-least model of P,

b) �P is a most consistent model of P,

c) �
P is the k-minimal element among the

most consistent models of P.

Corollary 10 implies that �P minimizes the

amount of knowledge that is pre-supposed, i.e.

it does not assume anything that is not re-

ally known. The same corollary also shows

that �P is a most consistent model of P. As

such, it minimizes the amount of inconsistent

belief in the set of clauses. This is in accor-

dance with the intuition that while one has to

deal with con
icts in a nontrivial way, contra-

dictory data corresponds to inadequate infor-

mation about the real world, and therefore it

should be minimized.8

3.2 Extended logic programs

In this section we extend the �xpoint semantics

for general logic programs, considered in the

previous section, to extended logic programs.

So now, in addition to the explicit negation :,

the negation-as-failure operator (not) may also

appear in the clauses bodies.

One way of understanding not in the four-

valued setting is the following: If we don't

know anything about p, i.e. we cannot prove

either p or :p, then we cannot say anything

8See also [3].

about not p as well. Otherwise, if p has a des-

ignated value in the intended semantics (i.e., p

is provable), then not p does not hold, and if p

does not have a designated value (i.e., it is not

provable), then not p holds. It follows, then,

that not t = f , not > = f , not f = t, and

not ? = ?.

In what follows we use a transformation,

similar to that of the well-founded semantics

[25], for reducing extended logic programs to

general logic programs. Then we use the for-

malism of the previous section for giving se-

mantics to the general logic programs that are

obtained.

De�nition 11 Let � be a four-valued valua-

tion. The set S� that is associated with � is

the smallest set of literals that satis�es the fol-

lowing conditions: 9

if �(l) = t then l 2 S� ,

if �(l) = f then l2S� ,

if �(l) = > then fl; lg � S� .

De�nition 12 Let P be an extended program

and let S be a set of literals. The reduction of

P w.r.t. S is the general logic program P #S,

obtained from P as follows:

1. Each clause that has a condition of the

form not l, where l2S, is deleted from P.

2. Every occurrence of not l, where l 2 S,

is eliminated from the (bodies of the) re-

maining clauses.10

3. Every occurrence of not l in the remain-

ing clauses is replaced by the propositional

constant u.

Now we are ready to de�ne our �xpoint se-

mantics for extended logic programs. Recall

that �P denotes the �xpoint semantics for a

general logic program P.

9Such sets are sometimes called answer sets (for �).

We shall not use this terminology here, since inconsis-

tent answer sets contain every literal, and this is not

the case here.
10If a clause body becomes empty by this transfor-

mation, it is treated as consisting of the propositional

constant t.



De�nition 13 A valuation �2 V 4 is an ade-

quate solution for an extended logic program

P, if it coincides with the �xpoint semantics of

the general logic program obtained by reduc-

ing P w.r.t. the set that is associated with �.

In other words, � is an adequate solution for

P i� the following equation holds:

� = �
P#S�

Note 14 If the only negation operator that

appears in P is :, then P is a general logic

program, and so its unique adequate solution is

�
P . It follows, in particular, that the notion of

adequate solutions of extended logic programs

is a generalization of the �xpoint semantics for

general logic programs.

Proposition 15 Any adequate solution for P

is a model of P, and the consequence rela-

tion that is induced by it is non-monotonic and

paraconsistent.

As it is shown in Example 17 below, an ex-

tended logic program may have more than one

adequate solution, and so one may use di�erent

preference criteria for choosing the best solu-

tions among the adequate ones. In the case

of general logic programs we have chosen �k-

minimization as the criterion for preferring the

\best" model among the �xpoint valuations.

This was justi�ed by the fact that general logic

programs may contain contradictory data, and

so we want to minimize the redundant informa-

tion as much as possible. In the present case we

rather use the opposite methodology: since the

negation-as-failure operator corresponds to in-

complete information, we are dealing here with

a lack of data, so this time we should try to re-

strict the e�ect of the negation-as-failure oper-

ator only to those cases in which indeed there

is not enough data available. It follows, there-

fore, that now we should seek for a maximal

knowledge (among the adequate solutions). 11

11Informally, we use here a \min/max strategy":

knowledge minimization of the contradictory compo-

nents of the program, and knowledge maximization of

its incomplete components.

De�nition 16 � is a most adequate model of

P if it is a �k-maximal adequate solution for

P. 12

Example 17 Below we consider our seman-

tics for some inconsistent and/or incomplete

logic programs.

1. P = f:p not pg.

Intuitively, P represents a closed word as-

sumption (CWA, [22]) regarding p: In the

absence of any evidence for p, assume that

:p holds. P has two adequate solutions

�1=fp :?g and �2=fp :fg. But �2>k�1,

so �2 is the most adequate model of P.

2. P = fp not p; q tg.

The most adequate model here is fp :?; q :

tg. This indeed seems to be the only rea-

sonable interpretation in this case, since

it distinguishes between the meaningful

data in P (fq  tg), and the meaning-

less data (fp not pg). Note also that

the most adequate solution here coincides

with the well-founded model [25] (for stan-

dard logic programs) of P. Two-valued

semantics, such as Gelfond-Lifschitz sta-

ble model semantics [14], do not provide

any model for P.

3. (Examples 1 and 2, revisited)

P = fq t; p t; p r; :p not :qg.

The most adequate model here is fp :

>; q : t; r :?g. It re
ects our expectation

that no information about r is available,

and since :q does not follow from P, the

knowledge about p is contradictory. Note

that according to the semantics given in

[15, 19], P does not have any model, since

it is not classically consistent.

P
0 = P [ f:q pg.

As noted in Example 2 above, the new in-

formation that is added to P should cause

a complete revision in the reasoner's belief

about p and q. The most adequate model

of P 0, fp : t; q :>; r :?g, indeed re
ects

the expected result of such a revision.

12Note that by Proposition 15, � is indeed a model

of P.



4 Concluding remarks

One of the main drawbacks of some related �x-

point semantics (such as those introduced in

[15] and [19]) is that they become trivial in

the presence of contradictions, and so these for-

malisms are not paraconsistent. We do believe

that since inconsistent knowledge can and may

be represented in extended logic programs, a

plausible semantics for such programs should

be able to draw meaningful conclusions (and

reject others) despite the inconsistency. The

�xpoint semantics considered here has such ca-

pabilities: it pinpoints the inconsistent and the

incomplete parts of the data, and regards the

rest of the information as classically consistent.

Another major di�erence between the se-

mantics introduced here and some other se-

mantics for extended logic programs (e.g, [13,

15, 17, 21]) concerns with the way negative

data is related to its positive counterpart.

While the formalisms of [13, 15, 17, 21] treat

p and :p as two di�erent atomic formulae, we

preserve the relation between an atomic for-

mula and its negated atom. To see the impor-

tance of this, consider the following program

(also considered in [5, Example 3.3.6] and [19,

Example 1]):

P = fp not q; q  not p; :p tg

According to the approaches that treat :p as

(a strange way of writing) an atomic formula,

the well-founded semantics would assign here t

to :p, ? to p, and ? to q. So even though P is

classically consistent, the distinction between p

and :p causes a counter-intuitive result here:

since there is no way to refute p without re-

lating it to :p, it is not possible to conclude

q. In contrast, our semantics re
ects the intu-

itive expectations in this case, and the unique

adequate solution for P is fp :f; q : tg.

For another example, consider the following

logic program [19, Example 6]:

P = fr  not q; q  not p; p not p;

:q tg

If :q is considered as an atomic formula, this

program has a single extended stable model,

in which :q is true and all the other atomic

formulae (p; q; r) are unknown. This seems to

be a counter-intuitive result, since in this case

one expects that r would follow from P. The

unique adequate solution for P (and so its most

adequate model) is fp :?; q :f; r : tg. Accord-

ing to this semantics r indeed follows from P,

as expected.13

Finally, we note that our approach may be

incorporated with other techniques for improv-

ing the way knowledge is represented in the un-

derlying program. For instance, by using the

methodology proposed by Pereira et al. in [20],

it is possible to represent preferences among

di�erent program rules by associating a dif-

ferent 'label' to each program rule, and then

adding these labels as new conditions to the

bodies of the rules. This enables an easy way

to represent a hierarchy of rules in the lan-

guage itself. For instance, the fact that un-

der the conditions speci�ed in Body one should

apply a rule labeled by l1 instead of a rule la-

beled by l2, is encoded by a preference rule like

:l2  Body; l1.

The same paper also suggests a method for

exception handling that may also be encoded

in our framework. For instance, a rule like

fly(x) bird(x)

that states that every bird can 
y, may be re-

placed by more cautious rules, such as

fly(x) bird(x); not abnormal bird(x),

abnormal bird(x) bird(x);:fly(x),

which imply that 
ying ability is only a default

property of birds.
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