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Abstract In the research on paraconsistency, preferential systems
were used for constructing logics which are paraconsistent
but stronger than substructural paraconsistent logics. The
preferences in these systems were defined in different ways.
Some were based on checking which abnormal formulas
(such asy A —)) are satisfied in the models of a the-
. ; ory (see e.g.[Priest, 1991; Batens, 198 Others were
las in models. The framework encompasses dif- ) se4 on preferences between the truth values that are as-
ferent types of preferential systems that were de- signed to formulas (see e.g[Kifer and Lozinskii, 1992;
veloped from different motivations of paraconsis- Arieli and Avron, 2000.
tent reasoning and non-monotonic reasoning, and Preferential systems were also used for providing se-
reveals an important link between them. mantics for nonmonotonic consequence relations (see e.g.
[Shoham, 1987; Kraust al., 1990; Makinson, 1994 It was
1 Introduction discovered, however, that in order for them to satisfy all the

For a long time the research efforts on paraconsistency arfle_swed theoretical properties that plausible nonmonotonic re-

on nonmonotonic reasoning were separated. The former r ations should have (see e.g.ehmann, 1999, preferential

search dealt with the question of how to prevent the inferencgyStems need to satisfy a further condition called stoppered-

of every fact from an inconsistent source of knowledge, andi€ss or smoothness. The problem is that this condition is usu-

how to isolate inconsistent parts of the knowledge and ye?‘”ly r:ﬁt easy to verify. id It K truct
work in the usual way with the consistent parts. The latter N TIS paper we provide a general framework for construct=

dealt with the question of how to “jump to conclusions” based "9 natural consequence relations for paraconsistent and plau-

on partial knowledge of the domain (this is needed since hav§Ib|e nonmonotonic reasoning. The main technique is using

ing complete knowledge is often unrealistic), and how to repreferential systems in which the preference between models

vise previous “*hasty” conclusions in the face of new and fuller’ Nade according to a certain set of formulas which are sat-
information. isfied in them. The framework encompasses different types

However, in recent years the formal connections betweequ preferential systems that were used for constructing use-

these two areas have begun to be revealed. It is only naturgfl paraconsistent consequence relations. Moreover, these

that such a connection would exist, because conclusions thg@tural prgferential sysﬁems that were originally designed fqr
are drawn based on partial knowledge may contradict ne\'garacon&stent reasoning satisfy the stopperedness condition

and more reliable information, and each new piece of infor2S well, and her_me have also the des_|red theoretical properties
f nonmonotonic consequence relations.

mation may contradict previous information and hence forcd . . :
As we said, the theoretical research on nonmonotonic rea-

us to revise some of our knowledge. As the famous example : .

goes, if we conclude that Tweety can fly based on the sol oning and the research on paraconsistent reasoning have

fact that it is a bird, the new piece of information that Tweety Pe€n conducted separately at first. Nevertheless, formula-

is a penguin and penguins cannot fly forces us not only to rePreferential systems, which are a generalization of methods
sed in the latter, solve a key issue in the former, and help

vise previous conclusions but also to deal with the fact tha o bridge the gap between the two directions of research and

we now have a contradiction in our knowledge. i bine th d ified f K Thi id
Both goals of handling contradictions and reasoning non:2 ¢OMYIN€ them under a unined framework. IS provides
trong evidence for their important rule in non-classical rea-

monotonically require some selection between alternatives’
which parts of the knowledge to retain and which to discard>°""n9:
or change. A central tool in both fields has bgeeferential L

systemsmeaning that only a subset of the models should b<_2 Preliminaries

relevant for making inferences from a theory. These modelén what follows £ is a languageyV is its set of wifs), ¢, 7
are the most preferred ones according to some criterion.  denote formulas ofZ, andI', A denote sets of formulas.

We provide a general framework for construct-

ing natural consequence relations for paraconsis-
tent and plausible nonmonotonic reasoning. The
framework is based on preferential systems whose
preferences are based on the satisfaction of formu-



When the language is propositionad, denotes its set of A prime example for such a case is the Nmat$jx. It is
propositional variables, and ¢, r denote such variables. defined in the classical propositional language with the con-

Definition 2.1 1 A semantic structuréor a languageC is a  "€Ctives{A,V,D,~, f}. The interpretation of all the con-
pairS = (Mg, =5), where=5 C Ms x W. Mg is a set nectives except for is the cla§S|caI one (e.grAy = {t}
of modelsand|=* is called asatisfaction relation A model if 2 =y = tand{f} qth(irwse), whereas negation is a
m € Ms satisfiesa formulay if m =5 . m is amodel of ~Non-deterministic operatiorf = {t} but~t = {¢, f} (a
[ (m ES ) if it satisfies every formula i, The set of the fprmula and Its negation rrT1ay both be aSS|gn_aui a va_lua-
models off" is denoted bynod(T, S). A is aconsequencef tion). The mcr induced b, can bg characterized u3|r,19 th'e.
TinS (T FS A)if for everym € mod(T,S), m =5 ¢ for Gentzen-type calculus that is obtained f_rom Gentzen'’s origi-
somep € A. nal calculus (|dQentzen, 1969 for classical logic (includ-
) ) . ) ing cut) by omitting the rulé— =] for introducing negation
Itis easy to verify that every semantic structure induces &n the left. The consequence relation inducedspycannot
monotonic consequence rE|ati0mrin short, i.e. it satisfies be induced by any finite matrix. Moreover, any two-valued
reflexivity: if N A # @ then' - A, monotonicity: ifl' = A Nmatrix which has at least one proper nondeterministic oper-
andl’ C I, A C A"thenI” - A’, and cut: ifl’' -4, Aand  ation does not have an equivalent finite matrix.
I',¢ = Al thenl',I" = A, AT). - We shall later mention nonmonotonic logics which are
A common type of semantic structures for propositionalhased on the underlying paraconsistent monotonic logics in-
logics is the class of multi-valued matrices. In these strucqyced bySpT as well as the well-known four-valued matrix

tures the value tha_t a valuation assigns toa colmplex formul@4 of [Belnap, 197Fwith the truth-valuest, f, T, L} (in the

is uniquely determined by the va!ues that it assigns to its subs|assical propositional language) and its submagijxwith

formulas. However, an agent acting in the real world often hag, o values{t, f, T} (t, T are designated)S; is the maxi-
) ) )

gir(njlzsincgmepﬁégs?éliél%%résrij;i?]t flg:oo\llélgﬁr?ge \’:\j’ltﬁﬂ'ﬁlg E?O%El’g:;rmal paraconsistent logic that contains,s (positive classical
is to borrow the idea afion-deterministicomputations from ogic), whereass,, is the minimal logic that contains-,o;

- ; . in which=T 2
automata and computability theory, and apply it for assign@nd in whicht-, +, ~y for all ).
ing truth-values to complex formulas. Here we use a natural 1n€ following result will be important for our framework
generalization of the logical concept of a matrix — the valugn Séction 4:
that a valuation assigns to a complex formula can be chosenheorem 2.3 3 Every finite Nmatrix is finitary.
non-deterministically from a certain nonempty set of options:

Definition 2.2 [Avron and Lev, 200DA non-deterministic 3 Nonmonotonic Consequence Relations

matrix (Nmatrix for short) for a propositional languageis | recent years there has been a wide study of theoretical
atupleS = (T,D,0), whereT is a non-empty set dfuth  roperties that nonmonotonic consequence relations should
values D is a non-empty proper subset bf(its designated satisfy (see e.g[Arieli and Avron, 2000b for a list of such
valueg, and for everyn-ary connective, 9 includes a cor- works). Here we shall use the following notion:
respondinge-ary functions from 7" to 2" — {_(Z)}. A valu- o . , ) i
ationin S is a functionv : W — 7 that satisfies the condi- Definition 3.1 * Let - be an mcr. A binary relatiop- be

tion: if o is ann-ary connective, andy, ..., ¥, € W, then tween sets of formulas and sets of formulas is called
v(o(r, ... ) € (), ...,v(y)). Vs denotes the plausibleif it satisfies the following conditions:
set of valuations of. The satisfaction relatiogS C Vs x W Ext F-extension

is definedw [=° v iff v(y)) € D. We identify the NmatrixS foreveryl', A #£ ), if T - A thenT' |~ A.
with the semantic structur@’s, =°). Every (deterministic) RM  right monotonicity

matrix can be identified with an Nmatrix whose functionsin if I' ~ A andA C A’ thenT |~ A.

O always return singletons. LCM left cautious monotonicity

In addition to their obvious potential for reasoning un- if I' |~ ¢ foreveryy € I, andI" |~ A thenl, I |~ A.
der uncertainty and for specification and verification of non- LCC left cautious cut
deterministic programs, N-matrices have considerable practi-if I' [~ ¢, A forevery) € ¥ andl', £ |~ A thenl” |~ A.
cal technical applications. It is well known that every propo- RCC right cautious cut
sitional logic can be characterized semantically using a multi- if I ¢ i~ A for everyy € £ andl' |~ X, A thenl” |~ A.
valued matrix [tos and Suszko, 1938 However, there A central method for providing semantics to plausible non-
are important logics whose characteristic matrices necessasonotonic consequence relations has been the use of prefer-
ily consist of an infinite number of truth values, and are thusential systems. The idea of preferential systems (which began
of little help in providing decision procedures for their logics, in [Shoham, 198]] is that instead of using all the models of
or in getting real insight into them. Our generalization of thea given theory for checking which conclusions follow from
concept of a matrix allows us to replace in many casesanin—
finite characteristic matrix for a given propositional logic by ~ ?The mcr induced bys, is the same a€LuN from [Batenset
a characteristidinite structure that automatically provides a al. 1999 and the logick'/2 of [Béziau, 1998
decision procedure. 3SeelAvron and Lev, 200D
- 4pafter [Lehmann, 1992; Arieli and Avron, 200Dbwith slightly

1See e.g[Makinson, 1994; Lehmann, 192 different names and conditions.



it, the models are ordered by a preference relation, and onlgbnormalities (here — inconsistencies) in the models of a the-
the most preferred models are used as relevant for makingry (by “abnormality” we mean a formula that leads to trivi-

inferences from the theory.

Notation 3.2 If A is a set with a pre-ordex, x < y denotes
z<yandy Az. Ming(A) ={zr € A|Vye A y Az}
Definition 3.3 5 Let S be a semantic structure.
1. A preferential systern S is a pairP = (S, <), where
<is a pre-order ooV s.
2. Amodelm € mod(T, S) is aP-preferential modedf T’
if m € pmod(T', P) = Min<(mod(T', S)).

3. A set of formulasl’ P-preferentially entailsa set of
formulas A (notation: T' F” A) if for every m €
pmod(I',P) there is ap € A st. m =5 ¢.6 F¥ is
called theconsequence relatidnnduced byP.

Definition 3.4 Let A be a set with a pre-ordet. A is stop-
pered under< if everyz € A hasz’ € Min<(4) s.t.2’' < z.

Definition 3.5 8 A preferential systenP = (S, <) is stop-
peredif for all T, mod(T", S) is stoppered undex.

Theorem 3.6 ° If P is a stoppered preferential systemdn
thenr7” is -S-plausible.

ality w.r.t. a desired logic, here — classical logic).

Our generalization is to choose some Gedf formulas in
the language, and to have the preferential system select those
models of a theory that minimize the satisfaction of formulas
from G. Formula-preferential systems can be defined w.r.t.
any setG of formulas, and also in any semantic structure,
since what is important for the preference relation between
the models is which formulas fro@ they satisfy, and not
their inner structure. Formally:

Notation 4.1 Let S be a semantic structure and &tC W.
Form € Mg denoteSats ¢(m) = {¢ € G | m E° ¢}.

Definition 4.2 Let G C W. A formula-preferential system
based onG is a preferential syste? = (S, <) that satis-
fies: for allmy,my € Mg, my < my iff Sats g(my) C
Sats ¢ (m2). P is called in short a&-preferential system”.

In this way formula-preferential systems provide a natural
source of stoppered preferential systems. The formulés in
express the undesired properties which we would like to min-
imize in the preferred models, and the nonmonotonic conse-
guence relations that these systems induce satisfy the condi-
tions of Definition 3.1 whenever they are based on a finitary

Note: The stopperedness condition is introduced becausgSmantic structure:
some preferential systems which are not stoppered do not sakheorem 4.3 If P is a formula-preferential system in a fini-
isfy the condition LCM of Definition 3.1 (although the other tary semantic structure theR is stoppered.

conditions are always satisfied by all preferential systems).

As noted in[Kraus et al, 1990; Makinson, 1994 it is

usually not easy to check whether a preferential system

Corollary 4.4 If P is a formula-preferential system in a fini-

itsary semantic structuré then-” is -S-plausible.

stoppered. Preferential systems were originally developed dsorollary 4.5 If 7 is a formula-preferential system in a finite
a framework for providing semantics for nonmonotonic in- NmatrixS thent" is -4 -plausible.

ference relations. They were also used, apparently indepen- The |ast Corollary follows from Theorem 2.3 and Corollary
dently at first, for constructing systems for reasoning with in-4 4. Since in practice one usually works with finite structures,
consistencies (and other abnormalities) in a way which is ofhis means that this result has great practical significance.
the one hand non-trivial and on the other hand not as weak We mention now some known systems from the literature

as monotonic substructural logics (see eldPriest, 1991;
Kifer and Lozinskii, 1992; Batens, 1998 Interestingly,

which can be constructed using formula-preferential systems.
All of them are based on finite Nmatrices, so by Corollary 4.5

these ideas, which were developed from motivations differtheir induced consequence relations are plausible. Whenever
ent from stopperedness will provide us with methods for conthe underlying monotonic logics are paraconsistent, so are the

structing stoppered preferential systems.

4 Formula-Preferential Systems

induced nonmonotonic relations.

Closed-World Assumption
In the “Closed-World Assumption” methddReiter, 1978, a

Formula-preferential systems are a generalization of th@ropositional variable that cannot be proved is assumed to be

‘minimal-abnormality strategy” froniBatens, 1998 That
paper uses a specific selection of models f% Denoting
K(v) = {¢ € Wq |v(¥p A ) = t}, amodel of T is se-
lected iff there is no other model of I" s.t. K (v') C K (v).

In this way the minimal-abnormality strategy minimizes the

SFollowing [Makinson, 1994; Lehmann, 19p2
®Note that we daot require thatm € pmod({$}, P), or that
m € pmod(I'U {¢}, P).

false. A corresponding formula-preferential system is defined
in the classical two-valued matrix and is based.4n (the
propositional variables of the language). The obtained conse-
guence relation is nonmonotonic but not paraconsistent.

Preferential systems for handling contradictions

. is paraconsistent, but it is too weak for adequate reason-
ing, e.g. the Disjunctive Syllogism (from, =2 V ¢ infer ¢)

is not valid in it, even on classically consistent sets. A con-

"The term “consequence relation” here is more general than ag€équence relation that is located betwegnand classical

mcr. In particular, we do not assume monotonicity.

8Following [Makinson, 1994 In [Krauset al, 1990; Lehmann,
1997 this is calledsmoothness

%A Generalization of a result itArieli and Avron, 2000b.

logic can be obtained by using the formula-preferential sys-
temP = (S5 , <) thatis based o¥ = {p A —p|p € Aa}.

7 is the same akPm of [Priest, 1991 (whenS; is with-

out D) andACLuUNs?2 of [Batens, 199B It is nonmonotonic,



paraconsistent, and in contrasttg, it is the same as classi- systen(in S) based or< is a preferential systef = (S, <)
cal logic on classically consistent sets. that satisfies the condition: for all, vy € Vg, vy < vy iff
for every propositional variablg, v, (p) < v2(p). If <isa

Adaptive Logics ; ; A .
: 4 ) - . partial-orderP is calledstrongly pointwise will be called
Adaptive logics[Batens, 1998; 20Q0wvere originally intro- in short a ‘<-preferential system”.

duces by dynamic proof systems that are designed to mimic
some aspects of human reasoning with inconsistencies, es-[Arieli and Avron, 2000b shows that pointwise preferen-
pecially the fact that conclusions that are drawn at a certaitial systems that are based on well-founded partial orders are
stage may be rejected at a later stage because of other caioppered and hence induce plausible relations.

clusions, and then even accepted again. The name “adap-Pointwise preferential systems are in general a different
tive” is due to the fact that these logics adapt their rules tdype of systems than formula-preferential systems. Neverthe-
the given set of premises. E.g. the Disjunctive Syllogismless, by adding certain connectives to the language, we can

is not valid in+; . Its use is not allowed bACLUNS2 on
L= {r, -r, -r Vs, p, 7pV g} forinferring s (sincer be-
haves inconsistently) but it is allowed for inferrigg(since
there is no reason to suppose théehaves inconsistently).

construct for each pointwise preferential system a formula-
preferential system that induces the same consequence rela-
tion and, in a certain sense, has the same preference relation.
A consequence of this embedding is that the finitariness of

Adaptive logics that are based on the minimal-abnormalitthe underlying semantic structure ensures the stopperedness
strategy are a special case of the formula-preferential systenf$operty:
where the set is taken as a set of abnormal formulas. Forpefinition 5.2 LetS = (T, D, ©) be a Nmatrix for a propo-

example ACLUN2 (note: notACLuUNs2) is induced by the
formula-preferential system Lﬁl—f that is based oy = {¢y) A
) | b € We}. ACL D2 from [Batens, 199Pis based on the
two-valued NmatrixS, in which all the connectives of the
classical language are weakened: fonaary connective €
Yo = {/\7 V, 2,7, f} and anyzr ¢ {ta f}n’ 3(j) = {ta f}
Sy has in addition the connectivesand& which function in
Sp as classical negation and conjunctidp, is the formula-
preferential system i¥y that is based on the sé%: the set

that includes all formulas which express the fact that a certai

formula o(4)1, . ..,%,) and one or more of)q, ..., v, are

sitional language, and let£’ be a propositional language
with the same variables a8 but with additional logical
connectives. Arextension ofS to £ is a NmatrixS' =
(T,D,0'") for L' s.t. 0" O O. A valuationv’ in &' is an
extensiorof a valuatiorw in S to £' if v andv’ agree on/.

Definition 5.3 LetS = (7, D, O) be an Nmatrix forl and
let P = (S, <) be a<-preferential system. A formula-
preferential systerassociatedwvith P is P’ = (S', ') for
#ﬁe language’, where/' is like £ but with the added or de-
Ined connective$l, |z € T}, S’ is an extension of to £’

assigned values that are illegal in a classical valuation, e.gvith the same truth values s.t. for everyy € 7, I,y C D

P&, (Y & ¢) & ~( A @), (Y & ~p) & (¥ D ¢), etc.
In comparison toACLUN2, ACL ()2 is “adaptive” on all the
connectives irt.;, not only—.

Other adaptive logics (sd®atens, 200D use a formula-

if y > zandI,y C 7 — D otherwise, and®’ is based on
G={LplzeT,pe A}

Note: For all valuations in S', v =5 L4 iff v(¢) > .

preferential systerf? in a more complicated way: the defini- Theorem 5.4 Let P = (S, <) be a <-preferential system

tion of the adaptive logig~ is: T |~ Aiff Tr(T) F” Tr(4A),
whereT'r is some pre-processing of the formulas.

5 Pointwise-preferential systems

[Arieli and Avron, 2000b suggests another method for con-
structing preferential systems that are stoppered. The method

is based on a type of preferential systems caflethtwise

and letP’ = (S', =X') be an associated formula-preferential
system.

1. Foralll,A C W, T FP Aiff D FP' A.

2. Forallvy,vs € Vs, v < vy iff for each of their (respec-
tive) extensions; , v, € Vs: to L', v} =<' ).

Note: for eachz € T thatis a least element (< y for all

preferential systems. The underlying idea is to have a prefey € 7), definingG without any formulal, p will give the
ence between the truth values of a multiple-valued structureame result, since suehguarantees that |=°' I,.p for all v,
and to base the preference between the valuations on this prefad so the presence of these formula&idoes not influence

erence. For example, in the (N)matsx, we might prefer the
classical values and f over T and_, since a valuation sat-
isfies exactly one of) and—w iff it assigns a classical value

to ¢. If there are two models for a given set of premises an
they assign the same values to all atomic formulas except th&X

one assigns to p and the othefT, we might prefer the first.
This is the underlying idea of the following definition:

Definition 5.1 19 LetS be an Nmatrix with a set of truth val-
uesT, and let< be a pre-order off . A pointwise preferential

the preference relation.
Corollary 5.5 If P is a pointwise preferential system in

f finitary Nmatrix S then P is stoppered and-” is 5-

lausible.

The pointwise preferential systems frgArieli and Avron,
20004 are based on the finite matric€s andS;’, so they
can be embedded in formula-preferential systems, and their
induced consequence relations are therefore plausible.

The first type of systems is based on the idea of minimal

19 generalization of ‘pointwise preferential systems' from knowledge. InSy, it is based on the partial ordet;: L <y
[Arieli and Avron, 2000b, which are in our notations strongly point- (¢, f) <x T. The corresponding formula-preferential system

wise preferential systems in matrices.

(in S,) is based on the set that includesp = p A —p, I1p =



o Irp=-p,Ip=¢ D¢ foralpe A,. According to the The propositional case. (to appearReports on Mathe-
remark abovel | p is redundant. In this particular casep is matical Logig, 1999.

also redundant, i.e. itis enough to take= Aa U {~p[p €  [Batensetal, 2004 D. Batens, C. Mortensen, G. Priest, and
A }. Note that contrary to the original motivation behind ™ 351 paul Van Bendegem, editoFsontiers of Paraconsis-

the minimal-abnormality strategy ¢Batens, 1998 in this tent Logic King’s College Publications, Research Studies
system (as well as in CWA of section 4) we do not regard the  pracs Baldock. UK. 2000.

formulas inG as abnormal (in particular, all the variables are ) ) )
in G), but rather as the formulas whose satisfaction we wanBatens, 1998 D. Batens. Inconsistency-adaptive logics. In

to minimize in the models. Ewa Orlowska, editofzssays Dedicated to the Memory of

The second type of systems frd#rieli and Avron, 2000k Helena RasiowaSpringer, Heidelberg, New York, 1998.
is based on the idea of minimal inconsistency: it is based ofiBatens, 199p D. Batens. Zero logic adding up to clas-
choosing a subset of inconsistent truth valieand defining sical logic. Logical Studies (2), 1999. http://
the pre-ordeKy: =, <z zy iff 2,y € T —Z orazy € I. www. | ogi c. ru/ LogSt ud/ 02/ LS2. htmi .

The preferential system from section 4 that corresponds t : . _
ACLuUNSs2 can be defined as th€z-preferential system in fBatens, 200pD. Batens. A survey of inconsistency adap

S] whereT = {T}. I T = {t.f T}, this is the only in- tive logics. In[Batenset al, 2004, pages 49—74. 2000.

consistency set. In the general case, there may be other ifBelnap, 1977 N. D. Belnap. A useful four-valued logic.
consistency sets. For example,$, bothZ; = {T} and In G.. Epstein and J M. Dunn, edltor_Modern Uses of
7, = {T, L} are inconsistency sets, and they induce differ- Multiple-Valued Logicpages 7-37. Reidel, 1977.

ent consequence relations. LBf (i = 1,2) be the point-  [Béziau, 1999 Jean-Yves Bziau. Classical negation can be

wise <z,-preferential system i&,. P, can be embedded  expressed by one of its halvdsogic Journal of the IGPL
in the formula-preferential system (ify) that is based on 7:145-151, 1999.

the setGG that includesl+p = p A —p for all p € A, and
Lip=1Iyp=1,p=¢ D ¢. According to the remark above,
only the formulad+p are necessary. F@t,, the setincludes
Itp=1,p= (p D ﬂp) A (ﬂp D p) forallp € A, (and
LIip = Iyp = ¢ D ¢ are redundant).

[Gentzen, 1960 Gerhard Gentzen. Investigations into logi-
cal deduction. In M. E. Szabo, editdhe Collected Works
of Gerhard Gentzemages 68-131. North Holland, Ams-
terdam, 1969.

[Kifer and Lozinskii, 1992 M. Kifer and E. L. Lozinskii. A
6 Conclusion logic for reasoning with inconsistencylournal of Auto-

. . mated Reasonin@®(2):179-215, 1992.
Our main goal in this paper was to demonstrate the central )
role of formula-preferential systems in non-classical reasontKrausetal, 199(:] S. Kraus, D. Lehmann, and M. Magidor.
ing. We have shown how different systems from the literature Nonmonotonic reasoning, preferential models and cumu-
for reasoning in the face of inconsistencies and other abnor- 1ative logics.Al, 44(1-2):167-207, 1990.
malities, can be constructed in this framework. Moreover, al{Lehmann, 199P D. Lehmann. Plausibility logic. IfProc.
though most of these systems were not originally part of the 5th Ann. Conf. of the European Assoc. for CS Logic
theoretical research of nonmonotonic consequence relations, (CSL’91) pages 227—241. Springer-Verlag, 1992.

ﬁglramgelg_erﬁléléﬁ:’g?]?;fsthsetgmprsefer[)enggsrelgtlolrt'ﬁ ;Or;heeih'ggio tos and Suszko, 1958. tos and R. Suszko. Remarks on
ula-p lal Sy provi u Wi -~ sentential logics. Indagationes Mathematicae0:177—
ensuring the condition of stopperedness: formula-preferential 183. 1958

systems that are based on finitary semantic structures are = ) ]
stoppered, and hence satisfy theoretical desiderata for a plalMakinson, 1994 D. Makinson. General patterns in non-
sible nonmonotonic logic. All the examples from the litera- ~ Monotonic reasoning. In D. M. Gabbay, C. Hogger, and
ture that we have given are of this kind since they are based J. Robinson, editorgjandbook of Logic in Artificial Inel-

on finite non-deterministic matrices. ligence and Logic Programmingolume 3, pages 35-110.
Oxford Science Pub., 1994.
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