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Abstract

We provide a general framework for construct-
ing natural consequence relations for paraconsis-
tent and plausible nonmonotonic reasoning. The
framework is based on preferential systems whose
preferences are based on the satisfaction of formu-
las in models. The framework encompasses dif-
ferent types of preferential systems that were de-
veloped from different motivations of paraconsis-
tent reasoning and non-monotonic reasoning, and
reveals an important link between them.

1 Introduction
For a long time the research efforts on paraconsistency and
on nonmonotonic reasoning were separated. The former re-
search dealt with the question of how to prevent the inference
of every fact from an inconsistent source of knowledge, and
how to isolate inconsistent parts of the knowledge and yet
work in the usual way with the consistent parts. The latter
dealt with the question of how to “jump to conclusions” based
on partial knowledge of the domain (this is needed since hav-
ing complete knowledge is often unrealistic), and how to re-
vise previous “hasty” conclusions in the face of new and fuller
information.

However, in recent years the formal connections between
these two areas have begun to be revealed. It is only natural
that such a connection would exist, because conclusions that
are drawn based on partial knowledge may contradict new
and more reliable information, and each new piece of infor-
mation may contradict previous information and hence force
us to revise some of our knowledge. As the famous example
goes, if we conclude that Tweety can fly based on the sole
fact that it is a bird, the new piece of information that Tweety
is a penguin and penguins cannot fly forces us not only to re-
vise previous conclusions but also to deal with the fact that
we now have a contradiction in our knowledge.

Both goals of handling contradictions and reasoning non-
monotonically require some selection between alternatives:
which parts of the knowledge to retain and which to discard
or change. A central tool in both fields has beenpreferential
systems, meaning that only a subset of the models should be
relevant for making inferences from a theory. These models
are the most preferred ones according to some criterion.

In the research on paraconsistency, preferential systems
were used for constructing logics which are paraconsistent
but stronger than substructural paraconsistent logics. The
preferences in these systems were defined in different ways.
Some were based on checking which abnormal formulas
(such as ^ : ) are satisfied in the models of a the-
ory (see e.g. [Priest, 1991; Batens, 1998]). Others were
based on preferences between the truth values that are as-
signed to formulas (see e.g.[Kifer and Lozinskii, 1992;
Arieli and Avron, 2000a]).

Preferential systems were also used for providing se-
mantics for nonmonotonic consequence relations (see e.g.
[Shoham, 1987; Krauset al., 1990; Makinson, 1994]). It was
discovered, however, that in order for them to satisfy all the
desired theoretical properties that plausible nonmonotonic re-
lations should have (see e.g.[Lehmann, 1992]), preferential
systems need to satisfy a further condition called stoppered-
ness or smoothness. The problem is that this condition is usu-
ally not easy to verify.

In this paper we provide a general framework for construct-
ing natural consequence relations for paraconsistent and plau-
sible nonmonotonic reasoning. The main technique is using
preferential systems in which the preference between models
is made according to a certain set of formulas which are sat-
isfied in them. The framework encompasses different types
of preferential systems that were used for constructing use-
ful paraconsistent consequence relations. Moreover, these
natural preferential systems that were originally designed for
paraconsistent reasoning satisfy the stopperedness condition
as well, and hence have also the desired theoretical properties
of nonmonotonic consequence relations.

As we said, the theoretical research on nonmonotonic rea-
soning and the research on paraconsistent reasoning have
been conducted separately at first. Nevertheless, formula-
preferential systems, which are a generalization of methods
used in the latter, solve a key issue in the former, and help
to bridge the gap between the two directions of research and
to combine them under a unified framework. This provides
strong evidence for their important rule in non-classical rea-
soning.

2 Preliminaries
In what followsL is a language,W is its set of wffs, ; �; �
denote formulas ofL, and �;� denote sets of formulas.



When the language is propositional,A denotes its set of
propositional variables, andp; q; r denote such variables.

Definition 2.1 1 A semantic structurefor a languageL is a
pairS = hMS ; j=

Si, wherej=S � MS �W . MS is a set
of modelsandj=S is called asatisfaction relation. A model
m 2 MS satisfiesa formula if m j=S

 . m is amodel of
� (m j=S

�) if it satisfies every formula in�. The set of the
models of� is denoted bymod(�;S). � is aconsequenceof
� in S (� `S �) if for everym 2 mod(�;S), m j=S

� for
some� 2 �.

It is easy to verify that every semantic structure induces a
monotonic consequence relations (mcr in short, i.e. it satisfies
reflexivity: if �\� 6= ; then� ` �, monotonicity: if� ` �

and� � �
0, � � �

0 then�0 ` �
0, and cut: if� `  ;� and

�
0
;  ` �

0 then�;�0 ` �;�
0).

A common type of semantic structures for propositional
logics is the class of multi-valued matrices. In these struc-
tures the value that a valuation assigns to a complex formula
is uniquely determined by the values that it assigns to its sub-
formulas. However, an agent acting in the real world often has
only incomplete or inconsistent knowledge to guide its deci-
sions. One possible approach for dealing with this problem
is to borrow the idea ofnon-deterministiccomputations from
automata and computability theory, and apply it for assign-
ing truth-values to complex formulas. Here we use a natural
generalization of the logical concept of a matrix – the value
that a valuation assigns to a complex formula can be chosen
non-deterministically from a certain nonempty set of options:

Definition 2.2 [Avron and Lev, 2000] A non-deterministic
matrix (Nmatrix for short) for a propositional languageL is
a tupleS = hT ;D;Oi, whereT is a non-empty set oftruth
values, D is a non-empty proper subset ofT (its designated
values), and for everyn-ary connective�, O includes a cor-
respondingn-ary functione� from T n to 2

T � f;g. A valu-
ation in S is a functionv : W ! T that satisfies the condi-
tion: if � is ann-ary connective, and 1; : : : ;  n 2 W , then
v(�( 1; : : : ;  n)) 2 e�(v( 1); : : : ; v( n)). VS denotes the
set of valuations ofS. The satisfaction relationj=S � VS�W
is defined:v j=S

 iff v( ) 2 D. We identify the NmatrixS
with the semantic structurehVS ; j=Si. Every (deterministic)
matrix can be identified with an Nmatrix whose functions in
O always return singletons.

In addition to their obvious potential for reasoning un-
der uncertainty and for specification and verification of non-
deterministic programs, N-matrices have considerable practi-
cal technical applications. It is well known that every propo-
sitional logic can be characterized semantically using a multi-
valued matrix ([Łos and Suszko, 1958]). However, there
are important logics whose characteristic matrices necessar-
ily consist of an infinite number of truth values, and are thus
of little help in providing decision procedures for their logics,
or in getting real insight into them. Our generalization of the
concept of a matrix allows us to replace in many cases an in-
finite characteristic matrix for a given propositional logic by
a characteristicfinite structure that automatically provides a
decision procedure.

1See e.g.[Makinson, 1994; Lehmann, 1992].

A prime example for such a case is the NmatrixS>
p

. It is
defined in the classical propositional language with the con-
nectivesf^;_;�;:; fg. The interpretation of all the con-
nectives except for: is the classical one (e.g.xe^y = ftg
if x = y = t and ffg otherwise), whereas negation is a
non-deterministic operation:e:f = ftg but e:t = ft; fg (a
formula and its negation may both be assignedt in a valua-
tion). The mcr induced byS>

p
can be characterized using the

Gentzen-type calculus that is obtained from Gentzen’s origi-
nal calculus (in[Gentzen, 1969]) for classical logic (includ-
ing cut) by omitting the rule[: )] for introducing negation
on the left. The consequence relation induced byS>

p
cannot

be induced by any finite matrix. Moreover, any two-valued
Nmatrix which has at least one proper nondeterministic oper-
ation does not have an equivalent finite matrix.

We shall later mention nonmonotonic logics which are
based on the underlying paraconsistent monotonic logics in-
duced byS>

p
as well as the well-known four-valued matrix

S4 of [Belnap, 1977] with the truth-valuesft; f;>;?g (in the
classical propositional language) and its submatrixS>3 with
the valuesft; f;>g (t;> are designated).S>3 is the maxi-
malparaconsistent logic that contains`pos (positive classical
logic), whereasS>

p
is the minimal logic that contains̀ pos

and in which̀ >
p
 ;: for all  . 2

The following result will be important for our framework
in section 4:

Theorem 2.3 3 Every finite Nmatrix is finitary.

3 Nonmonotonic Consequence Relations
In recent years there has been a wide study of theoretical
properties that nonmonotonic consequence relations should
satisfy (see e.g.[Arieli and Avron, 2000b] for a list of such
works). Here we shall use the following notion:

Definition 3.1 4 Let ` be an mcr. A binary relationj� be-
tween sets of formulas and sets of formulas is called`-
plausibleif it satisfies the following conditions:

Ext `-extension:
for every�;� 6= ;, if � ` � then� j� �.
RM right monotonicity:
if � j�� and� � �

0 then� j� �
0.

LCM left cautious monotonicity:
if � j�  for every 2 �

0, and� j�� then�;�0 j��.
LCC left cautious cut:
if � j�  ;� for every 2 � and�;� j�� then� j��.
RCC right cautious cut:
if �;  j�� for every 2 � and� j� �;� then� j��.

A central method for providing semantics to plausible non-
monotonic consequence relations has been the use of prefer-
ential systems. The idea of preferential systems (which began
in [Shoham, 1987]) is that instead of using all the models of
a given theory for checking which conclusions follow from

2The mcr induced byS>p is the same asCLuN from [Batenset
al., 1999] and the logicK=2 of [Béziau, 1999].

3See[Avron and Lev, 2000].
4After [Lehmann, 1992; Arieli and Avron, 2000b], with slightly

different names and conditions.



it, the models are ordered by a preference relation, and only
the most preferred models are used as relevant for making
inferences from the theory.

Notation 3.2 If A is a set with a pre-order�, x � y denotes
x � y andy 6� x. Min�(A) = fx 2 A j 8y 2 A: y 6� xg.

Definition 3.3 5 Let S be a semantic structure.

1. A preferential systemin S is a pairP = hS;�i, where
� is a pre-order onMS .

2. A modelm 2 mod(�;S) is aP-preferential modelof �
if m 2 pmod(�;P) = Min�(mod(�;S)).

3. A set of formulas� P-preferentially entailsa set of
formulas� (notation: � `P �) if for every m 2
pmod(�;P) there is a� 2 � s.t. m j=S �.6 `P is
called theconsequence relation7 induced byP .

Definition 3.4 LetA be a set with a pre-order�. A is stop-
pered under� if everyx 2 A hasx0 2 Min�(A) s.t.x0 � x.

Definition 3.5 8 A preferential systemP = hS;�i is stop-
peredif for all �,mod(�;S) is stoppered under�.

Theorem 3.6 9 If P is a stoppered preferential system inS
then`P is `S-plausible.

Note: The stopperedness condition is introduced because
some preferential systems which are not stoppered do not sat-
isfy the condition LCM of Definition 3.1 (although the other
conditions are always satisfied by all preferential systems).

As noted in[Kraus et al., 1990; Makinson, 1994], it is
usually not easy to check whether a preferential system is
stoppered. Preferential systems were originally developed as
a framework for providing semantics for nonmonotonic in-
ference relations. They were also used, apparently indepen-
dently at first, for constructing systems for reasoning with in-
consistencies (and other abnormalities) in a way which is on
the one hand non-trivial and on the other hand not as weak
as monotonic substructural logics (see e.g.[Priest, 1991;
Kifer and Lozinskii, 1992; Batens, 1998]). Interestingly,
these ideas, which were developed from motivations differ-
ent from stopperedness will provide us with methods for con-
structing stoppered preferential systems.

4 Formula-Preferential Systems
Formula-preferential systems are a generalization of the
‘minimal-abnormality strategy” from[Batens, 1998]. That
paper uses a specific selection of models fromS>

p
. Denoting

K(v) = f 2 Wcl j v( ^ : ) = tg, a modelv of � is se-
lected iff there is no other modelv0 of � s.t.K(v0) � K(v).
In this way the minimal-abnormality strategy minimizes the

5Following [Makinson, 1994; Lehmann, 1992].
6Note that we donot require thatm 2 pmod(f�g;P), or that

m 2 pmod(� [ f�g;P).
7The term “consequence relation” here is more general than an

mcr. In particular, we do not assume monotonicity.
8Following [Makinson, 1994]. In [Krauset al., 1990; Lehmann,

1992] this is calledsmoothness.
9A Generalization of a result in[Arieli and Avron, 2000b].

abnormalities (here – inconsistencies) in the models of a the-
ory (by “abnormality” we mean a formula that leads to trivi-
ality w.r.t. a desired logic, here – classical logic).

Our generalization is to choose some setG of formulas in
the language, and to have the preferential system select those
models of a theory that minimize the satisfaction of formulas
from G. Formula-preferential systems can be defined w.r.t.
any setG of formulas, and also in any semantic structure,
since what is important for the preference relation between
the models is which formulas fromG they satisfy, and not
their inner structure. Formally:

Notation 4.1 Let S be a semantic structure and letG � W .
Form 2MS denote:SatS;G(m) = f 2 G jm j=S  g.

Definition 4.2 Let G � W . A formula-preferential system
based onG is a preferential systemP = hS;�i that satis-
fies: for allm1;m2 2 MS , m1 � m2 iff SatS;G(m1) �
SatS;G(m2). P is called in short a “G-preferential system”.

In this way formula-preferential systems provide a natural
source of stoppered preferential systems. The formulas inG
express the undesired properties which we would like to min-
imize in the preferred models, and the nonmonotonic conse-
quence relations that these systems induce satisfy the condi-
tions of Definition 3.1 whenever they are based on a finitary
semantic structure:

Theorem 4.3 If P is a formula-preferential system in a fini-
tary semantic structure thenP is stoppered.

Corollary 4.4 If P is a formula-preferential system in a fini-
tary semantic structureS then`P is `S-plausible.

Corollary 4.5 If P is a formula-preferential system in a finite
NmatrixS then`P is `S-plausible.

The last Corollary follows from Theorem 2.3 and Corollary
4.4. Since in practice one usually works with finite structures,
this means that this result has great practical significance.

We mention now some known systems from the literature
which can be constructed using formula-preferential systems.
All of them are based on finite Nmatrices, so by Corollary 4.5
their induced consequence relations are plausible. Whenever
the underlying monotonic logics are paraconsistent, so are the
induced nonmonotonic relations.

Closed-World Assumption
In the “Closed-World Assumption” method[Reiter, 1978], a
propositional variable that cannot be proved is assumed to be
false. A corresponding formula-preferential system is defined
in the classical two-valued matrix and is based onAcl (the
propositional variables of the language). The obtained conse-
quence relation is nonmonotonic but not paraconsistent.

Preferential systems for handling contradictions
`>
3

is paraconsistent, but it is too weak for adequate reason-
ing, e.g. the Disjunctive Syllogism (from , : _ � infer �)
is not valid in it, even on classically consistent sets. A con-
sequence relation that is located between`>

3
and classical

logic can be obtained by using the formula-preferential sys-
temP = hS>

3
;�i that is based onG = fp ^ :p j p 2 Aclg.

`P is the same asLPm of [Priest, 1991] (whenS>
3

is with-
out�) andACLuNs2 of [Batens, 1998]. It is nonmonotonic,



paraconsistent, and in contrast to`>
3

, it is the same as classi-
cal logic on classically consistent sets.

Adaptive Logics
Adaptive logics[Batens, 1998; 2000] were originally intro-
duces by dynamic proof systems that are designed to mimic
some aspects of human reasoning with inconsistencies, es-
pecially the fact that conclusions that are drawn at a certain
stage may be rejected at a later stage because of other con-
clusions, and then even accepted again. The name “adap-
tive” is due to the fact that these logics adapt their rules to
the given set of premises. E.g. the Disjunctive Syllogism
is not valid in`>

3
. Its use is not allowed byACLuNs2 on

� = fr; :r; :r _ s; p; :p _ qg for inferrings (sincer be-
haves inconsistently) but it is allowed for inferringq (since
there is no reason to suppose thatp behaves inconsistently).

Adaptive logics that are based on the minimal-abnormality
strategy are a special case of the formula-preferential systems
where the setG is taken as a set of abnormal formulas. For
example,ACLuN2 (note: notACLuNs2) is induced by the
formula-preferential system inS>

p
that is based onG = f ^

: j  2 Wclg. ACL ;2 from [Batens, 1999] is based on the
two-valued NmatrixS0 in which all the connectives of the
classical language are weakened: for ann-ary connective� 2
�cl = f^;_;�;:; fg and any�x 2 ft; fgn, e�(�x) = ft; fg.
S0 has in addition the connectives� and& which function in
S0 as classical negation and conjunction.P0 is the formula-
preferential system inS0 that is based on the setG0: the set
that includes all formulas which express the fact that a certain
formula �( 1; : : : ;  n) and one or more of 1; : : : ;  n are
assigned values that are illegal in a classical valuation, e.g.
 & : , ( & �) & �( ^ �), ( & ��) & ( � �), etc.
In comparison toACLuN2 , ACL ;2 is “adaptive” on all the
connectives in�cl, not only:.

Other adaptive logics (see[Batens, 2000]) use a formula-
preferential systemP in a more complicated way: the defini-
tion of the adaptive logicj� is: � j� � iff Tr(�) `P Tr(�),
whereTr is some pre-processing of the formulas.

5 Pointwise-preferential systems
[Arieli and Avron, 2000b] suggests another method for con-
structing preferential systems that are stoppered. The method
is based on a type of preferential systems calledpointwise
preferential systems. The underlying idea is to have a prefer-
ence between the truth values of a multiple-valued structure
and to base the preference between the valuations on this pref-
erence. For example, in the (N)matrixS4, we might prefer the
classical valuest andf over> and?, since a valuation sat-
isfies exactly one of and: iff it assigns a classical value
to  . If there are two models for a given set of premises and
they assign the same values to all atomic formulas except that
one assignst to p and the other>, we might prefer the first.
This is the underlying idea of the following definition:

Definition 5.1 10 LetS be an Nmatrix with a set of truth val-
uesT , and let� be a pre-order onT . A pointwise preferential

10A generalization of ‘pointwise preferential systems’ from
[Arieli and Avron, 2000b], which are in our notations strongly point-
wise preferential systems in matrices.

system(in S) based on� is a preferential systemP = hS;�i
that satisfies the condition: for allv1; v2 2 VS , v1 � v2 iff
for every propositional variablep, v1(p) � v2(p). If � is a
partial-order,P is calledstrongly pointwise. P will be called
in short a “�-preferential system”.

[Arieli and Avron, 2000b] shows that pointwise preferen-
tial systems that are based on well-founded partial orders are
stoppered and hence induce plausible relations.

Pointwise preferential systems are in general a different
type of systems than formula-preferential systems. Neverthe-
less, by adding certain connectives to the language, we can
construct for each pointwise preferential system a formula-
preferential system that induces the same consequence rela-
tion and, in a certain sense, has the same preference relation.
A consequence of this embedding is that the finitariness of
the underlying semantic structure ensures the stopperedness
property:

Definition 5.2 Let S = hT ;D;Oi be a Nmatrix for a propo-
sitional languageL, and letL0 be a propositional language
with the same variables asL but with additional logical
connectives. Anextension ofS to L0 is a NmatrixS 0 =
hT ;D;O0i for L0 s.t. O0 � O. A valuationv0 in S 0 is an
extensionof a valuationv in S toL0 if v andv0 agree onW .

Definition 5.3 Let S = hT ;D;Oi be an Nmatrix forL and
let P = hS;�i be a�-preferential system. A formula-
preferential systemassociatedwith P is P 0 = hS 0;�0i for
the languageL0, whereL0 is likeL but with the added or de-
fined connectivesfIx j x 2 T g, S 0 is an extension ofS toL0

with the same truth values s.t. for everyx; y 2 T , eIxy � D

if y � x and eIxy � T � D otherwise, andP 0 is based on
G = fIxp j x 2 T ; p 2 Ag.

Note: For all valuationsv in S 0, v j=S
0

Ix iff v( ) � x.

Theorem 5.4 Let P = hS;�i be a�-preferential system
and letP 0 = hS 0;�0i be an associated formula-preferential
system.

1. For all �;� � W , � `P � iff � `P
0

�.

2. For all v1; v2 2 VS , v1 � v2 iff for each of their (respec-
tive) extensionsv0

1
; v

0
2
2 VS0 toL0, v0

1
�0

v
0
2
.

Note: for eachx 2 T that is a least element (x � y for all
y 2 T ), definingG without any formulaIxp will give the
same result, since suchx guarantees thatv j=S

0

Ixp for all v,
and so the presence of these formulas inG does not influence
the preference relation.

Corollary 5.5 If P is a pointwise preferential system in
a finitary NmatrixS then P is stoppered and̀ P is `S-
plausible.

The pointwise preferential systems from[Arieli and Avron,
2000a] are based on the finite matricesS4 andS>

3
, so they

can be embedded in formula-preferential systems, and their
induced consequence relations are therefore plausible.

The first type of systems is based on the idea of minimal
knowledge. InS4, it is based on the partial order�k: ? <k

(t; f) <k >. The corresponding formula-preferential system
(in S4) is based on the set that includesI>p = p ^ :p, Itp =



p, Ifp = :p, I?p = � � �, for all p 2 Acl. According to the
remark above,I?p is redundant. In this particular caseI>p is
also redundant, i.e. it is enough to takeG = Acl [ f:p j p 2

Aclg. Note that contrary to the original motivation behind
the minimal-abnormality strategy of[Batens, 1998], in this
system (as well as in CWA of section 4) we do not regard the
formulas inG as abnormal (in particular, all the variables are
in G), but rather as the formulas whose satisfaction we want
to minimize in the models.

The second type of systems from[Arieli and Avron, 2000a]
is based on the idea of minimal inconsistency: it is based on
choosing a subset of inconsistent truth valuesI, and defining
the pre-order�I : x1 �I x2 iff x1 2 T � I or x2 2 I.
The preferential system from section 4 that corresponds to
ACLuNs2 can be defined as the�I-preferential system in
S
>

3
whereI = f>g. If T = ft; f;>g, this is the only in-

consistency set. In the general case, there may be other in-
consistency sets. For example, inS4, bothI1 = f>g and
I2 = f>;?g are inconsistency sets, and they induce differ-
ent consequence relations. LetPi (i = 1; 2) be the point-
wise �Ii-preferential system inS4. P1 can be embedded
in the formula-preferential system (inS4) that is based on
the setG that includesI>p = p ^ :p for all p 2 Acl and
Itp = Ifp = I?p = � � �. According to the remark above,
only the formulasI>p are necessary. ForP2, the set includes
I>p = I?p = (p � :p) ^ (:p � p) for all p 2 Acl (and
Itp = Ifp = � � � are redundant).

6 Conclusion
Our main goal in this paper was to demonstrate the central
role of formula-preferential systems in non-classical reason-
ing. We have shown how different systems from the literature
for reasoning in the face of inconsistencies and other abnor-
malities, can be constructed in this framework. Moreover, al-
though most of these systems were not originally part of the
theoretical research of nonmonotonic consequence relations,
the generalization of their preference relations to the idea of
formula-preferential systems provides us with a method for
ensuring the condition of stopperedness: formula-preferential
systems that are based on finitary semantic structures are
stoppered, and hence satisfy theoretical desiderata for a plau-
sible nonmonotonic logic. All the examples from the litera-
ture that we have given are of this kind since they are based
on finite non-deterministic matrices.
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