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Abstract Until recently, truth-functionality

has been considered essential to the mech-

anism for combining logics known as �b-

ring. Following the �rst e�orts towards ex-

tending �bred semantics to logics with non-

truth-functional operators, this paper aims

to clarify the subject at the light of ideas

borrowed from the theory of general log-

ics as institutions and the novel notion of

non-truth-functional room. Besides introduc-

ing the relevant concepts and constructions,

the paper presents a detailed worked example

combining classical �rst-order logic with the

paraconsistent propositional system C1, for

which a meaningful semantics is obtained.

The possibility of extending this technique to

build �rst-order versions of further logics of

formal inconsistency is also discussed.

Keywords: Fibring, non-truth-functional seman-

tics, paraconsistency, �rst-order.

1 Introduction

Recently, the problem of combining logics has

been deserving much attention. The practi-

cal impact of combining logics is clear. In the

�elds of arti�cial intelligence and software engi-

neering, the need for working with several for-

malisms at the same time is widely recognized.

Besides, combinations of logics are also of great

theoretical interest [3]. Among the di�erent

combination techniques, both �bring [11, 16]

and combinations of parchments [15] deserve

close attention, as well as [7] as far as non-

truth-functionality is concerned. Moreover, af-

ter the work in [5], it seems that the theory

of �bring can also deal with logics endowed

with non-truth-functional semantics, including

a wide class of paraconsistent logics.

To clarify the subject we adopt the general

context of institutions [13, 14], and introduce

the novel notion of non-truth-functional (ntf)

room. These can be seen, in fact, as the basic

constituents of ntf parchments, an algebraic-

oriented view on presentations of logics as insti-

tutions [12], from where we borrow the termi-

nology. Following the tradition of institutions,

we consider a logic to consist of an indexing

functor to a suitable category of logic systems.

In our case, the logic systems of interest are

ntf rooms. For simplicity, we shall only work

at this level of abstraction. As shown in [4],

everything can be smoothly lifted to the fully


edged indexed case.

This seems to provide the adequate set-

ting for widening the work reported in [5] to

a larger class of non-truth-functional logics,

by providing a neat separation between inter-

pretation structures and interpretation maps

and, altogether, a sharp delimitation of truth-

functionality. Our ntf rooms essentially extend

the rooms for model-theoretic parchments of

[15], as in the layered rooms of [6], by endow-

ing the algebras of truth-values with more than

just a set of designated values. In fact, we re-

quire the set of truth-values to be structured

according to a Tarskian closure operation as in

[4], recovering an early proposal of Smiley [17].

On the other hand, we shall also extend these,

following the ideas in [5], to cope with the pos-

sible non-truth-functionality of operators.

The paper is organized as follows: in Section

2 the concept of ntf room and related notions

are introduced and illustrated with represen-



tations of both classical �rst-order logic and

the paraconsistent propositional system C1; in

Section 3, after establishing the morphisms of

ntf rooms and using them to characterize �b-

ring, we explore the �bred semantics obtained

by combining classical �rst-order logic with C1;

Section 4 concludes the paper by hinting at

the possible systematization of the process of

obtaining �rst-order versions of paraconsistent

systems, and by discussing the possible exten-

sion of the completeness preservation results

that are known for the truth-functional case.

2 Non-truth-functional logics

In the sequel, AlgSig' denotes the category of

algebraic many sorted signatures � = hS;Oi,

where S is the set of sorts and O = fOwgw2S+

is the family of sets of operators indexed by

their type, with a distinguished sort ' (for for-

mulae) and morphisms preserving it. Given

one such signature, we denote by Alg(�) the

category of �-algebras and �-algebra homo-

morphisms, and by cAlg(�) the class of all

pairs hA; ci with A a �-algebra and c a clo-

sure operation on jAj' (the carrier of sort ',

that we can see as the set of truth-values). We

shall use T� to denote the initial �-algebra

(the term algebra), and [[ ]]A (for term in-

terpretation) to denote the unique Alg(�)-

homomorphism from T� to any given �-algebra

A. Also recall that every AlgSig'-morphism

� : �1 ! �2 has an associated reduct func-

tor j� : Alg(�2) ! Alg(�1). As usual,

we shall preferrably write b� (for term transla-

tion) instead of [[ ]]T�2 j� to denote the unique

Alg(�1)-homomorphism from T�1 to T�2 j� .

De�nition 2.1 An ntf room is a tuple R =

h�; T;I;S;Hi where:

� � = hS;Oi 2 jAlgSig'j is a signature (of

syntactic operators);

� �t = hS; T i 2 jAlgSig'j is a subsigna-

ture of � (the truth-functional part), with

� : �t ! � the corresponding AlgSig'-

inclusion morphism;

� I is a class (of interpretation structures);

� S : I ! cAlg(�t) is a map (assigning

truth-functional interpretation algebras to

interpretation structures);

� H = fHIgI2I , where each HI �

homAlg(�t)(T�j�;A) is a class (of interpre-

tation maps), letting S(I) = hA; ci.

In the sequel, whenever clear from the con-

text, we shall denote S(I) by hAI ; cIi.

Of course, the possible non-truth-function-

ality of an interpretation map regarding the

whole syntax given by � follows from the fact

that it is only required to be homomorphic over

the truth-functional part �t. For instance, an

operator o 2 O'' not in T can be non-truth-

functional in that the value of h(o(
)) may not

be a function of h(
) for some interpretation I

and h 2 HI . However, if C and T coincide, � is

the identity, and we recover the plain old truth-

functional case by letting each HI contain the

unique possible homomorphism [[ ]]AI .

A global entailment system can be extracted

from an ntf room by considering, for each in-

terpretation structure I, the set ;cI � jAI j' of

designated values. If we recognize jT�j' (the

carrier of sort ' in the initial �-algebra) as

the set of formulae and Mg = fhI; hi : I 2

I; h 2 HIg as the family of global models, we

can de�ne the corresponding global satisfaction

relation 

g between models and formulae by:

� hI; hi 
g 
 if h(
) 2 ;cI ,

and obtain the induced global consequence rela-

tion �
g between sets of formulae and formulae,

as expected, by de�ning:

� � �g Æ if hI; hi 
g Æ whenever hI; hi 
g �,

for every hI; hi 2 Mg.

Now, by further exploring the closure opera-

tion on truth-values and freely varying the ad-

mitted set of distinguished values, we can also

de�ne a local entailment system. Local mod-

els are set to be Ml = fhI; h; T i : hI; hi 2

Mg; T c
I � T � jAI j'g and the local satisfac-

tion relation 

l is de�ned by:



� hI; h; T i 
l 
 if h(
) 2 T .

The local consequence relation �
l is de�ned as

expected from 

l, and can be easily seen to

coincide with:

� � �l Æ if h(Æ) 2 fh(
) : 
 2 �gcI , for every

hI; hi 2 Mg.

In general, �l� is weaker than �
g
�, but we

always have that ; �l� 
 i� ; �
g
� 
.

For the sake of illustration we develop two

examples. The �rst one, naturally just truth-

functional, is classical �rst-order logic. The

second, where negation is an essentially non-

truth-functional operator, is the paraconsistent

propositional logic C1 of da Costa [9].

Example 2.2 Classical �rst-order logic.

Let F = fFngn2IN and P = fPngn2IN be fam-

ilies of sets of function and predicate symbols,

respectively, with the given arities, and X a

denumerable set of variables. The �rst-order

ntf room over hF; P;Xi consists of:

� S = f�; 'g, where � is the sort of terms;

� O = T (all operators are truth-functional)

is such that:

� O� = X [ F0,

� O�n� = Fn, n > 0,

� O�n' = Pn, n 2 IN ,

� O'' = f�g [ f8x;9x : x 2 Xg,

� O'2' = f^;_;�g;

� I is the class of all hF; P i-interpretations

I = hD; Ii with D 6= ; a set, fI : Dn
!

D for f 2 Fn, and pI � Dn for p 2 Pn;

� each S(I) = hA; ci with jAj� =

DAsg(X;D) and jAj' = }(Asg(X;D)),

where Asg(X;D) = DX is the set of as-

signments � to variables, and:

� xA(�) = �(x), x 2 X;

� fA(e1; : : : ; en)(�) =

fI(e1(�); : : : ; en(�)), f 2 Fn;

� pA(e1; : : : ; en) =

f� : he1(�); : : : ; en(�)i 2 pIg, p 2 Pn;

� �A (r) = Asg(X;D) n r;

� 8xA(r) =

f� : �[x=d] 2 r for every d 2 Dg;

� 9xA(r) =

f� : �[x=d] 2 r for some d 2 Dg;

� ^A(r1; r2) = r1 \ r2;

� _A(r1; r2) = r1 [ r2;

� �A (r1; r2) = (Asg(X;D) n r1) [ r2;

endowed with the cut closure operation

induced by set inclusion, that is, for ev-

ery R � }(Asg(X;D)), Rc = fr �

Asg(X;D) : (
T
R) � rg (the principal

ideal determined by (
T
R) on the com-

plete lattice h}(Asg(X;D);�i);

� each HI = f[[ ]]AIg.

In all cases, ;cI = fAsg(X;D)g and global sat-

isfaction at I corresponds to truth for all as-

signments, leading to the corresponding global

entailment. Local entailment, instead, corre-

sponds to consequence over a �xed assignment.

Note that f
g �
g (8x 
) but f
g 6�

l (8x 
),

hinting to the well-known fact that generaliza-

tion holds globally but not locally.

Example 2.3 Paraconsistent propositional

system C1.

Let � be a set of propositional symbols. The

C1 ntf room over � consists of:

� S = f'g;

� O is such that:

� O' = �;

� O'' = f:g;

� O'2' = f^;_;�g,

whereas T does not include :.

� I is the class of all pairs I = hB; #i where

B = hB;u;t;�;>;?i is a Boolean alge-

bra and # : �! B is a valuation;

� each S(I) = hA; ci with jAj' = B, and:

� �A = #(�), � 2 �;



� ^A(b1; b2) = b1 u b2;

� _A(b1; b2) = b1 t b2;

� �A (b1; b2) = �b1 t b2;

endowed with the cut closure operation in-
duced by the usual order on B de�ned by
b1 � b2 i� b1 t b2 = b2, that is, for every
X � B, Xc = fb 2 B : b1 � b if b1 �

x for every x 2 Xg (the least closed ideal
of hB;�i that contains X);

� each HI is the class of all Alg(�t)-
homomorphisms h : T�j� ! AI such that:

� �h(
) � h(: 
);

� h(:: 
) � h(
);

� (h(
Æ) u h(
) u h(: 
)) = ?;

� (h(
Æ) u h(ÆÆ)) � h((
 ^ Æ)Æ);

� (h(
Æ) u h(ÆÆ)) � h((
 _ Æ)Æ);

� (h(
Æ) u h(ÆÆ)) � h((
 � Æ)Æ),

where 
Æ is the usual C1 abbreviation of
:(
 ^ : 
).

In all cases, ;cI = f>g, and therefore global
satisfaction at I corresponds to truth, leading
to the corresponding global entailment. It is
also easy to see that, in this case, local and
global entailments coincide.

Although in the C1 system negation is not
truth-functional, the possible interpretations
of : are restricted according to the previ-
ous 6 conditions. Obviously, we would end
up exactly with classical propositional logic
if we replaced the last 5 conditions by just
(h(
) u h(: 
)) = ?. This last condition is
clearly a form of Pseudo-Scotus and would im-
mediately lead to h(: 
) = �h(
). However,
as it is, the third condition still embodies a
controlled form of explosion in the presence of
consistency (as expressed by the 
Æ abbrevia-
tion).

3 Fibring

Morphisms of ntf rooms are specially tailored
for �bring. Let us consider �xed two arbitrary

ntf rooms R1 = h�1; T1;I1;S1;H1i and R2 =
h�2; T2;I2;S2;H2i.

De�nition 3.1 A morphism from R1 to R2 is
a pair h�; �i where � : �1 ! �2 is an AlgSig'-
morphism and � : I2 ! I1 is a map such that:

� �(T1) � T2, inducing an AlgSig'-
morphism �t : �t

1 ! �t
2 that satis�es

(�2 Æ �
t) = (� Æ �1);

� if S2(I) = hA; ci then S1(�(I)) =
hAj�t ; ci;

� if h 2 H2;I then (hj�t Æ b�j�1) 2 H1;�(I).

Easily, ntf rooms and their morphisms con-
stitute a category NTFRoom, where we can
characterize �bring via colimits as in [16, 4,
5, 6, 19]. Extending these previous character-
izations of �bring to this level, we shall just
concentrate on the particular cases of colimit
de�ning �bring constrained by sharing of sym-
bols. Thus, when �bring R1 and R2, we shall
assume that the required sharing of operators
is speci�ed by means of the largest common
subsignature �0 = hS0; O0i of both �1 and
�2, that is S0 = S1 \ S2 (it always includes
at least ') and O0;w = O1;w\O2;w for w 2 S+

0 .
For simplicity, since it serves our current pur-
pose, we shall just dwell on the case where
all the shared operators are truth-functional
on both R1 and R2, that is, we assume that
T0 = O0 is contained in both T1 and T2. We
denote by �k : �0 ! �k the corresponding
signature inclusions and by R0 the ntf room
h�0; T0;I0;S0;H0i where I0 = cAlg(hS0; O0i),
S0 is the identity on I0 and each H0;hA;ci =

f[[ ]]Ag. In the simplest possible case when
S0 = f'g and O0 = T0 = ; we say that the
�bring is free or unconstrained .

De�nition 3.2 The �bring of R1 and R2 con-

strained by sharing �0 is the ntf room R =
hhS;Oi; T;I;S;Hi such that:

� S = S1 [ S2, with inclusions fk : Sk ! S;

� Ow = O1;w[O2;w if w 2 S+
0 , Ow = Ok;w if

w 2 S+
k n S+

0 and Ow = ; otherwise, with
inclusions gk : Ok ! O;



� Tw = T1;w [ T2;w if w 2 S+
0
, Tw = Tk;w if

w 2 S+
k
n S+

0
and Tw = ; otherwise;

� I is the class of all pairs hI1; I2i 2 I1�I2

such that jAI1
js = jAI2

js for every s 2 S0,

cI1 = cI2 and oAI1
= oAI2

for every w 2

S+
0

and o 2 T0;w;

� each S(hI1; I2i) = hA; ci, where A is the

unique hS; T i-algebra such that S1(I1) =

hAjhf1;g1it ; ci and S2(I2) = hAjhf2;g2it ; ci;

� each HhI1;I2i consists of all Alg(hS; T i)-

homomorphisms h : ThS;Cij� ! A such

that (hjhf1;g1it Æ
\hf1; g1ij�1) 2 H1;I1 and

(hjhf2 ;g2it Æ
\hf2; g2ij�2) 2 H2;I2 .

Note that the �bred interpretation algebras

are precisely those hA; ci obtained by joining

together any two given hA1; c1i and hA2; c2i

that are compatible on the shared syntax, and

that the �bred interpretation maps h are ob-

tained by extending any two given h1 and h2.

Proposition 3.3 The constrained �bring of

layered rooms R1 and R2 by sharing �0 is

a pushout of fh�k; �ki : R0 ! Rkgk2f1;2g in

NTFRoom, where each �k(I) = hAj
�

t

k

; ci if

Sk(I) = hA; ci.

As a corollary, unconstrained �bring is a co-

product inNTFRoom. Let us now analyze in

some detail the application of this construction

to the combination of classical �rst-order logic

and the propositional system C1.

Example 3.4 Paraconsistent �rst-order sys-

tem C
�
1 .

By �bring classical �rst-order logic over

hF; P;Xi and the paraconsistent propositional

system C1 (in the particular case when � = ;)

while sharing the classical operators ^, _ and

� via a corresponding pushout inNTFRoom,

we obtain the following ntf room:

� S = f�; 'g, where � is the sort of terms;

� O is such that:

� O� = X [ F0;

� O�n� = Fn, n > 0;

� O�n' = Pn, n 2 IN ;

� O'' = f:;�g [ f8x;9x : x 2 Xg;

� O'2' = f^;_;�g,

whereas T does not include :;

� I is the class of all hF; P i-interpretations

I = hD;
I
i, as in the classical case, since

}(Asg(X;D)) is always a Boolean algebra

with u = \, t = [, � = (Asg(X;D) n ),

> = Asg(X;D) and ? = ;;

� S(I) also coincides with the classical case;

� each HI is the class of all Alg(�
t
)-

homomorphisms h : T�j� ! AI such that:

� Asg(X;D) n h(
) � h(: 
);

� h(::
) � h(
);

� (h(
Æ) \ h(
) \ h(: 
)) = ;;

� (h(
Æ) \ h(ÆÆ)) � h((
 ^ Æ)Æ);

� (h(
Æ) \ h(ÆÆ)) � h((
 _ Æ)Æ);

� (h(
Æ) \ h(ÆÆ)) � h((
 � Æ)Æ).

As expected, ;
cI = fAsg(X;D)g, and local

and global entailments again re
ect reasoning

with or without �xing an assignment. What

is more, if we restrict the interpretation maps

a little further in order to encompass also the

following conditions:

� 8xA(h(

Æ
)) � h((8x 
)Æ);

� 8xA(h(

Æ
)) � h((9x 
)Æ);

� 9xA(h(: 
)) = h(:8x 
);

� 8xA(h(: 
)) = h(:9x 
),

we obtain precisely the paraconsistent �rst-

order system C
�
1 of [9], but with a semantics

that is richer than the bivalued semantics pro-

posed in [2], in the sense that local and global

reasoning are still distinguished (vide general-

ization). Note also that classical negation �

is indeed de�nable in terms of the paraconsis-

tent negation :. Namely, � 
 is interpreted

precisely as (: 
) ^ 
Æ.



Adding explosiveness back to C1, one obtains

simply the classical propositional logic. But, as

mentioned before, C1 indeed contains a quali-

�ed form of explosion: a contradiction 
 and

:
 implies anything else as soon as we are sure

that 
 is consistent , as indicated in C1 by the

validity of 
Æ. This fact characterizes C1 as a

particular case of a logic of formal inconsis-

tency, in fact, a C-system based on classical

propositional logic [8]. A promissing next step,

in this line of investigation, would be the ap-

plication of the above techniques to paracon-

sistent logics in general, or at least to larger

classes of C-systems, and logics of formal in-

consistency.

4 Conclusions

By adopting the general setting of the theory

of institutions [12, 13] and the novel notion

of ntf room, we have given a rigorous catego-

rial characterization of �bring of logics with

possible non-truth-functional semantics, in a

way that abstracts away from the previous at-

tempt reported in [5] and also extends it to

deal with logics that are not propositionally

based. Moreover, we have illustrated the ca-

pabilities of the proposed framework by ob-

taining a meaningful �bred semantics for the

paraconsistent �rst-order system C�
1
of [9]. Al-

though just an example, which by the way

could not even be dealt with in the context of

[5], we think that its implicit general character

is worth exploring on the way to systematizing

the process of �rst-orderfying a logic, namely

at the light of Gabbay's original ideas on the

potentialities of the idea of �bring [11].

While the hub of paraconsistent logic {

namely, avoiding the explosive character of in-

ferences in the presence of contradictions {

is in general completely identi�ed already at

the propositional level, it is often mathemat-

ically interesting to count on �rst-order ver-

sions of these logics. In fact, according to

the third requisite set forth by da Costa [9],

which would be responsible later on for mak-

ing some authors identify da Costa as the \true

founder of paraconsistent logic" (see for in-

stance [10]), all paraconsistent logics should be

�rst-order�able. This study opens the way to

the �rst-orderfying of a paraconsistent logic to

become something more than a craftsman job.

Beyond this goal, we also aim at explor-

ing the non-truth-functional representation of

other many-valued logics, and in particular the

possibility of building, for instance, �bred log-

ics that are simultaneously paraconsistent and

paracomplete, such as the logic of bilattices [1],

or the systematization of the process of fuzzy-

fying a logic [11]. Other interesting applica-

tions of �bring, in a truth-functional setting,

have been explored elsewhere and include, for

instance, the interplay between modalities and

quanti�ers [18] and a treatment of partiality in

the context of equational logic [6].

Moreover, and most importantly, we in-

tend to study the extension to this general

setting of the soundness and completeness

preservation results already obtained for truth-

functional �bring [19, 4, 6], and also for a

much more restricted non-truth-functional set-

ting [5], within the context of Hilbert-style

proof calculi and on a propositional basis.

With respect to soundness, everything is ex-

pected to work smoothly, according to the

general results in [4]. The completeness re-

sults, on their turn, use techniques involving

either Lindenbaum-Tarski constructions [4, 6],

Henkin style constructions [19] or encodings in

conditional equational logic as a meta-logic [5]

and also seem to be easily adaptable if we keep

the propositional base restriction. However,

the key ideas towards results also encompass-

ing logics with terms and quanti�cation are al-

ready being developed in the draft paper [18].
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