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Abstract Until recently, truth-functionality
has been considered essential to the mech-
anism for combining logics known as fib-
ring. Following the first efforts towards ex-
tending fibred semantics to logics with non-
truth-functional operators, this paper aims
to clarify the subject at the light of ideas
borrowed from the theory of general log-
ics as institutions and the novel notion of
non-truth-functional room. Besides introduc-
ing the relevant concepts and constructions,
the paper presents a detatiled worked example
combining classical first-order logic with the
paraconsistent propositional system Ci, for
which a meaningful semantics is obtained.
The possibility of extending this technique to
build first-order versions of further logics of
formal inconsistency is also discussed.
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1 Introduction

Recently, the problem of combining logics has
been deserving much attention. The practi-
cal impact of combining logics is clear. In the
fields of artificial intelligence and software engi-
neering, the need for working with several for-
malisms at the same time is widely recognized.
Besides, combinations of logics are also of great
theoretical interest [3]. Among the different
combination techniques, both fibring [11, 16]
and combinations of parchments [15] deserve
close attention, as well as [7] as far as non-
truth-functionality is concerned. Moreover, af-
ter the work in [5], it seems that the theory

Joao Marcos
Centre for Logic and Philosophy of Science
RUG, Ghent, Belgium

of fibring can also deal with logics endowed
with non-truth-functional semantics, including
a wide class of paraconsistent logics.

To clarify the subject we adopt the general
context of institutions [13, 14], and introduce
the novel notion of non-truth-functional (ntf)
room. These can be seen, in fact, as the basic
constituents of ntf parchments, an algebraic-
oriented view on presentations of logics as insti-
tutions [12], from where we borrow the termi-
nology. Following the tradition of institutions,
we consider a logic to consist of an indexing
functor to a suitable category of logic systems.
In our case, the logic systems of interest are
ntf rooms. For simplicity, we shall only work
at this level of abstraction. As shown in [4],
everything can be smoothly lifted to the fully
fledged indexed case.

This seems to provide the adequate set-
ting for widening the work reported in [5] to
a larger class of non-truth-functional logics,
by providing a neat separation between inter-
pretation structures and interpretation maps
and, altogether, a sharp delimitation of truth-
functionality. Our ntf rooms essentially extend
the rooms for model-theoretic parchments of
[15], as in the layered rooms of [6], by endow-
ing the algebras of truth-values with more than
just a set of designated values. In fact, we re-
quire the set of truth-values to be structured
according to a Tarskian closure operation as in
[4], recovering an early proposal of Smiley [17].
On the other hand, we shall also extend these,
following the ideas in [5], to cope with the pos-
sible non-truth-functionality of operators.

The paper is organized as follows: in Section
2 the concept of ntf room and related notions
are introduced and illustrated with represen-



tations of both classical first-order logic and
the paraconsistent propositional system Ci; in
Section 3, after establishing the morphisms of
ntf rooms and using them to characterize fib-
ring, we explore the fibred semantics obtained
by combining classical first-order logic with Cy;
Section 4 concludes the paper by hinting at
the possible systematization of the process of
obtaining first-order versions of paraconsistent
systems, and by discussing the possible exten-
sion of the completeness preservation results
that are known for the truth-functional case.

2 Non-truth-functional logics

In the sequel, AlgSig,, denotes the category of
algebraic many sorted signatures X = (S, O),
where S is the set of sorts and O = {Oy }pes+
is the family of sets of operators indexed by
their type, with a distinguished sort ¢ (for for-
mulae) and morphisms preserving it. Given
one such signature, we denote by Alg(X) the
category of X-algebras and X-algebra homo-
morphisms, and by cAlg(X) the class of all
pairs (A,c) with A4 a Y-algebra and c a clo-
sure operation on |A|, (the carrier of sort ¢,
that we can see as the set of truth-values). We
shall use 7x to denote the initial Y-algebra
(the term algebra), and [_]* (for term in-
terpretation) to denote the unique Alg(X)-
homomorphism from Ty, to any given Y-algebra
A. Also recall that every AlgSig,-morphism
o : X1 — Yo has an associated reduct func-
tor _|, @ Alg(Xe) — Alg(X;). As usual,
we shall preferrably write o (for term transla-
tion) instead of [_]72l to denote the unique
Alg(X)-homomorphism from Ty, to Ts,|s-

Definition 2.1 An nif room is a tuple R =
(3,T,Z,5,H) where:

e 3 = (S5,0) € |AlgSig,| is a signature (of
syntactic operators);

e X' = (5,T) € |AlgSig,| is a subsigna-
ture of ¥ (the truth-functional part), with
. : ' — X the corresponding AlgSig,-
inclusion morphism;

e T is a class (of interpretation structures);

e S : T — cAlg(X') is a map (assigning
truth-functional interpretation algebras to
interpretation structures);

e i = {Hr}rez, where each #H; C
hom a1g(st)(T2|., A) is a class (of interpre-
tation maps), letting S(I) = (A, c).

In the sequel, whenever clear from the con-
text, we shall denote S(I) by (A, cy).

Of course, the possible non-truth-function-
ality of an interpretation map regarding the
whole syntax given by X follows from the fact
that it is only required to be homomorphic over
the truth-functional part X'. For instance, an
operator o € Oy, not in T' can be non-truth-
functional in that the value of h(o(7y)) may not
be a function of h(7y) for some interpretation I
and h € Hj. However, if C' and T coincide, ¢ is
the identity, and we recover the plain old truth-
functional case by letting each H; contain the
unique possible homomorphism [_]4.

A global entailment system can be extracted
from an ntf room by considering, for each in-
terpretation structure I, the set 0°/ C |As], of
designated values. If we recognize |Tx|, (the
carrier of sort ¢ in the initial Y-algebra) as
the set of formulae and MY = {(I,h) : I €
Z,h € Hy} as the family of global models, we
can define the corresponding global satisfaction
relation IH9 between models and formulae by:

o (I,h)IF9 v if h(y) € e,

and obtain the induced global consequence rela-
tion F9 between sets of formulae and formulae,
as expected, by defining:

o ['E9§if (I,h) 9 § whenever (I,h) IF9 T,
for every (I,h) € M9Y.

Now, by further exploring the closure opera-
tion on truth-values and freely varying the ad-
mitted set of distinguished values, we can also
define a local entailment system. Local mod-
els are set to be M! = {(I,h,T) : (I,h) €
MY, T C T C |A;|,} and the local satisfac-
tion relation |- is defined by:



o (I,h,T)IF ~if h(y) € T.

The local consequence relation E' is defined as
expected from IF', and can be easily seen to
coincide with:

e T E §if h(8) € {h(y) : v € T}, for every
(I,h) € MY.

In general, . is weaker than F¥, but we
always have that 0 £ v iff 0 FY, .

For the sake of illustration we develop two
examples. The first one, naturally just truth-
functional, is classical first-order logic. The
second, where negation is an essentially non-
truth-functional operator, is the paraconsistent
propositional logic C; of da Costa [9].

Example 2.2 Classical first-order logic.

Let F' = {F,}, v and P = {P,}, v be fam-
ilies of sets of function and predicate symbols,
respectively, with the given arities, and X a
denumerable set of variables. The first-order
ntf room over (F, P, X') consists of:

e S ={7,¢p}, where 7 is the sort of terms;

e O =T (all operators are truth-functional)
is such that:
x O = X U Fyp,
* Oy = Fy,n >0,
* Oy =Py, n €N,
Opp = {~}U{Vz,3z: 2 € X},
Op2, ={N,V,D};

*

*

e T is the class of all (F, P)-interpretations
I =(D,_;) with D # 0 a set, f; : D" —
D for f € F,, and p;y C D™ for p € Py;

e cach S(I) = (A,c) with |A], =
DAEOD) and |Al, = p(Asg(X, D)),
where Asg(X,D) = DX is the set of as-
signments p to variables, and:

* zA(p) = p(z), v € X;

* faler, ... en)(p) =
fr(ei(p)- .- en(p), f € Fy;

x pa(er, ... en) =
{p:{ei(p);--- enlp)) €pr}, p € Pu;

* ~a (r) = Asg(X, D) \ 75
« Vru(r) =

{p : plz/d] € r for every d € D};
« Jra(r) =

{p : plz/d] € r for some d € D},
* Aa(ry,r2) =riNry
* Va(ry,rg) =riUry
* D (r1,m2) = (Asg(X, D) \ r1) Ury;

endowed with the cut closure operation
induced by set inclusion, that is, for ev-
ery R C p(ASg(X,D)), R¢ = {T -
Asg(X,D) : (NR) C r} (the principal
ideal determined by ([ R) on the com-
plete lattice (p(Asg(X, D), D));

e cach H; = {[_]*}.

In all cases, 0°7 = {Asg(X, D)} and global sat-
isfaction at I corresponds to truth for all as-
signments, leading to the corresponding global
entailment. Local entailment, instead, corre-
sponds to consequence over a fixed assignment.
Note that {y} F9 (Vzv) but {y} ¥ (Vzv),
hinting to the well-known fact that generaliza-
tion holds globally but not locally.

Example 2.3 Paraconsistent  propositional

system C.
Let IT be a set of propositional symbols. The
C1 ntf room over II consists of:

e S={p};
e (O is such that:
* O, = 1I;

¥ Opp = {7}
* Op2, = {A\,V, D},

whereas T does not include —.

e T is the class of all pairs I = (B, 1) where
B = (B,N,U,—,T,1) is a Boolean alge-
bra and 9 : Il — B is a valuation;

e cach S(I) = (A, c) with |A|, = B, and:

x mq=0(m), mell;



* AA(br,b2) = b1 Mboy;
% VA(b1,b2) = by Ubo;
* D (br,b2) = —by U by;

endowed with the cut closure operation in-
duced by the usual order on B defined by
b1 < by iff by U by = bo, that is, for every
XgB,XC:{bEBblgblfblg
x for every z € X} (the least closed ideal
of (B, >) that contains X);

e each H; is the class of all Alg(Xt)-
homomorphisms h : Tx|, — A such that:

* (h(Y°) TTh(y) Nh(=7)) = L;

* (h(y°) MA(6°)) < h((y A D)°);

* (h(y°) MA(6°)) < h((y Vv 0)°);

* (h(y°) MA(6°)) < A((y 3 6)°),

where «° is the usual C; abbreviation of
(v A=)

In all cases, (°7 = {T}, and therefore global
satisfaction at I corresponds to truth, leading
to the corresponding global entailment. It is
also easy to see that, in this case, local and
global entailments coincide.

Although in the C; system negation is not
truth-functional, the possible interpretations
of — are restricted according to the previ-
ous 6 conditions. Obviously, we would end
up exactly with classical propositional logic
if we replaced the last 5 conditions by just
(h(y) M h(=7)) = L. This last condition is
clearly a form of Pseudo-Scotus and would im-
mediately lead to h(—v) = —h(y). However,
as it is, the third condition still embodies a
controlled form of explosion in the presence of
consistency (as expressed by the v° abbrevia-
tion).

3 Fibring

Morphisms of ntf rooms are specially tailored
for fibring. Let us consider fixed two arbitrary

ntf rooms Ry = (X1,71,71,S51,H1) and Ry =
(X2,T2,Zs, S, Ha).

Definition 3.1 A morphism from Ry to Rs is
a pair (o, 0) where o : ¥ — Y9 is an AlgSig,-
morphism and 6 : Zy — Z; is a map such that:

e o(Ty) C T», inducing an AlgSig,-
morphism o' : X% — X! that satisfies
(t200") = (00 01);

o if S(I) = (Arc) then S(0(I) =
(-A|U°7c>;

e if he HZ,I then (h|o—t o 8|L1) € Hl,ﬂ([)'

Easily, ntf rooms and their morphisms con-
stitute a category NTFRoom, where we can
characterize fibring via colimits as in [16, 4,
5, 6, 19]. Extending these previous character-
izations of fibring to this level, we shall just
concentrate on the particular cases of colimit
defining fibring constrained by sharing of sym-
bols. Thus, when fibring R; and Ry, we shall
assume that the required sharing of operators
is specified by means of the largest common
subsignature ¥y = (Sp,0p) of both ¥; and
Y9, that is Sy = S1 N Sy (it always includes
at least ) and Og ) = O1,,N O3, for w € Sg“.
For simplicity, since it serves our current pur-
pose, we shall just dwell on the case where
all the shared operators are truth-functional
on both R; and R, that is, we assume that
To = Og is contained in both 77 and T5. We
denote by o : 39 — X the corresponding
signature inclusions and by Ry the ntf room
(30, To, Zo, So, Ho) where Zg = cAlg((So, Oo)),
Sp is the identity on Zy and each Hg 4y =
{[_]*}. In the simplest possible case when
So = {p} and Oy = Ty = 0 we say that the
fibring is free or unconstrained.

Definition 3.2 The fibring of Ry and Ry con-
strained by sharing Yo is the ntf room R =
((S,0),T,Z,S,H) such that:

e §=51US,, with inclusions fi : S — S}

o Oy =01,UOs, ifw € Sy, Oy = Oy if
w € S\ Sy and O, = 0 otherwise, with
inclusions g : Op — O;



o Ty =T UTsy ifwe Sy, Ty =Ty if
w e S\ S and T, = 0 otherwise;

e T is the class of all pairs (I1, I5) € Z; x Iy
such that | Ay, | = | A, |, for every s € Sp,
¢, = cp, and o4, = oy, for every w €
S{f and o € T ;

e cach S((I1,I2)) = (A,c), where A is the
unique (S, T)-algebra such that S;(I;) =
<‘A|(f1791>t7 c) and S3(Iz) = <A|(f2792)t7 c);

e each H 1,y consists of all Alg((S,T))-
homomorphisms h : Tig |, — A such

that (h|<f1:91>‘D o <flagl>|L1) S Hlyll and
(h|<f2792>t ° <f2792>|l,2) € H2J2,

Note that the fibred interpretation algebras
are precisely those (A, c) obtained by joining
together any two given (A, c;) and (Asg,ca)
that are compatible on the shared syntax, and
that the fibred interpretation maps h are ob-
tained by extending any two given h; and hs.

Proposition 3.3 The constrained fibring of
layered rooms Ry and Ro by sharing Yo is
a pushout of {{ok,0k) : Ro — Rylrefi2y n
NTFRoom, where each 0i(I) = <A|Ufc’c> if
Si(I) = (A, c).

As a corollary, unconstrained fibring is a co-
product in NTFRoom. Let us now analyze in
some detail the application of this construction
to the combination of classical first-order logic
and the propositional system Cj.

Example 3.4 Paraconsistent first-order sys-
tem C7.

By fibring classical first-order logic over
(F, P, X) and the paraconsistent propositional
system C; (in the particular case when II = ()
while sharing the classical operators A, V and
D via a corresponding pushout in NTFRoom,
we obtain the following ntf room:

e S ={7,¢p}, where 7 is the sort of terms;
e O is such that:

x O = X U Fy;

* Oy = Fp,n > 05

Oy =Py, n € IN;

Opp = {7, ~}U{Ve,Jz: 2 € X};
* Op2, = {A\,V, D},

*

*

whereas T' does not include —;

e 7 is the class of all (F, P)-interpretations
I = (D,_;), as in the classical case, since
p(Asg(X, D)) is always a Boolean algebra
withM=nN,U=U, — = (Asg(X,D)\ _),
T = Asg(X, D) and L = 0;

e S(I) also coincides with the classical case;

e each H; is the class of all Alg(X*)-
homomorphisms h : Tx|, — A; such that:

x Asg(X, D)\ h(y) C h(—7);
h(= =) C h(y);

*

« (h(y?) Nh(y) Nh(=y)) = 0;

* (h(v°) N A(6°)) C h((y A6)°);
* (h(v°) N A(6°)) C h((yV)°);
* (h(v°) N A(6°)) C h((y D0)°).

As expected, 07 = {Asg(X, D)}, and local
and global entailments again reflect reasoning
with or without fixing an assignment. What
is more, if we restrict the interpretation maps
a little further in order to encompass also the
following conditions:

we obtain precisely the paraconsistent first-
order system C; of [9], but with a semantics
that is richer than the bivalued semantics pro-
posed in [2], in the sense that local and global
reasoning are still distinguished (vide general-
ization). Note also that classical negation ~
is indeed definable in terms of the paraconsis-
tent negation —. Namely, ~ is interpreted
precisely as (=) Ay°.



Adding explosiveness back to Cy, one obtains
simply the classical propositional logic. But, as
mentioned before, C; indeed contains a quali-
fied form of explosion: a contradiction v and
—y implies anything else as soon as we are sure
that v is consistent, as indicated in C; by the
validity of y°. This fact characterizes C; as a
particular case of a logic of formal inconsis-
tency, in fact, a C-system based on classical
propositional logic [8]. A promissing next step,
in this line of investigation, would be the ap-
plication of the above techniques to paracon-
sistent logics in general, or at least to larger
classes of C-systems, and logics of formal in-
consistency.

4 Conclusions

By adopting the general setting of the theory
of institutions [12, 13] and the novel notion
of ntf room, we have given a rigorous catego-
rial characterization of fibring of logics with
possible non-truth-functional semantics, in a
way that abstracts away from the previous at-
tempt reported in [5] and also extends it to
deal with logics that are not propositionally
based. Moreover, we have illustrated the ca-
pabilities of the proposed framework by ob-
taining a meaningful fibred semantics for the
paraconsistent first-order system Cj of [9]. Al-
though just an example, which by the way
could not even be dealt with in the context of
[5], we think that its implicit general character
is worth exploring on the way to systematizing
the process of first-orderfying a logic, namely
at the light of Gabbay’s original ideas on the
potentialities of the idea of fibring [11].

While the hub of paraconsistent logic —
namely, avoiding the explosive character of in-
ferences in the presence of contradictions —
is in general completely identified already at
the propositional level, it is often mathemat-
ically interesting to count on first-order ver-
sions of these logics. In fact, according to
the third requisite set forth by da Costa [9],
which would be responsible later on for mak-
ing some authors identify da Costa as the “true

founder of paraconsistent logic” (see for in-
stance [10]), all paraconsistent logics should be
first-orderfiable. This study opens the way to
the first-orderfying of a paraconsistent logic to
become something more than a craftsman job.

Beyond this goal, we also aim at explor-
ing the non-truth-functional representation of
other many-valued logics, and in particular the
possibility of building, for instance, fibred log-
ics that are simultaneously paraconsistent and
paracomplete, such as the logic of bilattices [1],
or the systematization of the process of fuzzy-
fying a logic [11]. Other interesting applica-
tions of fibring, in a truth-functional setting,
have been explored elsewhere and include, for
instance, the interplay between modalities and
quantifiers [18] and a treatment of partiality in
the context of equational logic [6].

Moreover, and most importantly, we in-
tend to study the extension to this general
setting of the soundness and completeness
preservation results already obtained for truth-
functional fibring [19, 4, 6], and also for a
much more restricted non-truth-functional set-
ting [5], within the context of Hilbert-style
proof calculi and on a propositional basis.
With respect to soundness, everything is ex-
pected to work smoothly, according to the
general results in [4]. The completeness re-
sults, on their turn, use techniques involving
either Lindenbaum-Tarski constructions [4, 6],
Henkin style constructions [19] or encodings in
conditional equational logic as a meta-logic [5]
and also seem to be easily adaptable if we keep
the propositional base restriction. However,
the key ideas towards results also encompass-
ing logics with terms and quantification are al-
ready being developed in the draft paper [18].
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