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Abstract.  Both a body of human knowledge and a
knowledge/information system may be incomplete
and inconsistent in many ways.  Reasoning with
incomplete and inconsistent knowledge/information
is the rule rather than the exception in our everyday
real-life situations and most scientific disciplines.
Paraconsistent reasoning, or reasoning in the
presence of inconsistency, is indispensable to
scientific discovery.  This paper intends to answer
such a fundamental question: What kind of logic
system can satisfactorily underlie paraconsistent
reasoning in scientific discovery?  We show why
classical mathematical logic, its various classical
conservative extensions, and traditional (weak)
relevant logics cannot satisfactorily underlie
paraconsistent reasoning in scientific discovery,
and propose that one should adopt strong relevant
logic as the fundamental logic to underlie
paraconsistent reasoning in scientific discovery.  
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1. Introduction

Although reasoning and its automation was the
most actively investigated subject in a long time in
both Computer Science and Artificial Intelligence
disciplines, there still many open problems
concerning fundamental characteristics of reasoning
and its effective and efficient implementation on
computers.  

Reasoning is the process of drawing new
conclusions from some premises, which are known
facts or assumed hypotheses.  In general, a reasoning
consists of a number of arguments (or inferences).
An argument (or inference) is a set of declarative
sentences consisting of one or more sentences as its

premises, which contain the evidence, and one
sentence as its conclusion.  In an argument, a claim
is being made that there is some sort of evidential
relation between its premises and its conclusion:
the conclusion is supposed to follow from the
premises, or equivalently, the premises are supposed
to entail the conclusion.  The correctness of an
argument is a matter of the connection between its
premises and its conclusion, and concerns the
strength of the relation between them.  Therefore,
the correctness of an argument depends on the
connection between its premises and its conclusion,
and neither on whether the premises are true or not,
nor on whether the conclusion is true or not.  Thus,
we have a fundamental question: What is the
criterion by which one can decide whether the
conclusion really does follow from the premises or
not?  A logically valid reasoning is a reasoning
such that its arguments are justified based on some
logical criterion in order to obtain correct
conclusions.  Today, there are so many different
logic systems established based on different
philosophical motivations.  As a result, a reasoning
may be valid on one logical criterion but invalid on
another.  

Generally, for any correct argument in
scientific reasoning as well as our everyday
reasoning, the conclusion of the argument must
somehow be relevant to the premises of that
argument, and vice versa.  On the other hand, for
any correct argument in a deductive reasoning, the
conclusion of the argument must be true if all
premises of that argument are true (in the sense of a
certainly defined meaning of truth), i.e., any correct
argument in a deductive reasoning must be truth-
preserving.

Proving is the process of finding a
justification for a previously explicitly specified
statement from some known facts or assumed
hypotheses.  A proof is a description of a found
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justification.  A logically valid proving is a proving
such that it is justified based on some logical
criterion in order to obtain a correct proof.  

Unfortunately, many studies in Computer
Science and Artificial Intelligence disciplines
confused and are still confusing reasoning and
proving.  Indeed, the most intrinsic difference
between the notion of reasoning and the notion of
proving is that the former is intrinsically prescriptive
and predictive while the latter is intrinsically
descriptive and non-predictive.  The purpose of
reasoning is to find some new conclusions
previously unknown or unrecognized, while the
purpose of proving is to find a justification for some
statement previously known or assumed.  Proving
has an explicitly defined target as its goal while
reasoning does not.  

Since a reasoning has no previously
explicitly defined target, the only criterion it must
act according to is to reason correct conclusions
when the premises are correct.  It is logic that can
underlie valid reasoning generally.  

Both a body of human knowledge and a
knowledge/information system may be incomplete
and inconsistent in many ways.  Reasoning with
incomplete and inconsistent knowledge/information
is the rule rather than the exception in our everyday
real-life situations and most scientific disciplines.
Paraconsistent reasoning, or reasoning in the
presence of inconsistency, is indispensable to
scientific discovery.  Thus, we have a fundamental
question: what kind of logic system can
satisfactorily underlie paraconsistent reasoning in
scientific discovery?  This paper intends to answer
the question.  We show why classical mathematical
logic, its various classical conservative extensions,
and traditional (weak) relevant logics cannot
satisfactorily underlie paraconsistent reasoning in
scientific discovery, and propose that one should
adopt strong relevant logic as the fundamental logic
to underlie paraconsistent reasoning reasoning in
scientific discovery.

2. The Notion of Conditional and
Various Logic Systems

In various mathematical, natural, and social
scientific literature, it is probably difficult, if not
impossible, to find a sentence form that is more
generally used for describing various definitions,
propositions, theorems, and laws than the sentence
form of ‘if ... then ...’.  In logic, a sentence of the
form ‘if ... then ...’ is usually called a conditional
proposition or simply conditional which states that
there exists a relationship of sufficient condition
between the ‘if’ part and the ‘then’ part of the
sentence.  Mathematical, natural, and social
scientists always use conditionals in their
descriptions of various definitions, propositions,
theorems, and laws to connect a concept, fact,

situation or conclusion and its sufficient conditions.
Indeed, the major work of almost all scientists is to
discover some sufficient condition relations between
various phenomena, data, and laws in their research
fields.  

In general, a conditional must involve two
parts which are connected by the connective ‘if ...
then ... ’ and called the antecedent and the
consequent of that conditional, respectively.  The
truth-value of a conditional depends not only on the
truth-values of its antecedent and consequent but
also more essentially on a necessarily relevant and
conditional relation between them.  The notion of
conditional plays the most essential role in
reasoning because any reasoning form must invoke
it, and therefore, it is historically always the most
important subject studied in logic and is regarded as
the heart of logic [1].  

When we study and use logic, the notion of
conditional may appear in both the object logic (i.e.,
the logic we are studying) and the meta-logic (i.e.,
the logic we are using to study the object logic).  In
the object logic, there usually is a connective in its
formal language to represent the notion of
conditional, and the notion of conditional is also
usually used for representing a logical consequence
relation in its proof theory or model theory.  On the
other hand, in the meta-logic, the notion of
conditional, usually in the form of natural language,
is used for defining various meta-notions and
describe various meta-theorems about the object
logic.  

From the viewpoint of object logic, there are
two classes of conditionals.  One class is empirical
conditionals and the other class is logical
conditionals.  For a logic, a conditional is called an
empirical conditional of the logic if its truth-value,
in the sense of that logic, depends on the contents of
its antecedent and consequent and therefore cannot be
determined only by its abstract form (i.e., from the
viewpoint of that logic, the relevant relation between
the antecedent and the consequent of that conditional
is regarded to be empirical);  a conditional is called
a logical conditional of the logic if its truth-value,
in the sense of that logic, depends only on its
abstract form but not on the contents of its
antecedent and consequent, and therefore, it is
considered to be universally true or false (i.e., from
the viewpoint of that logic, the relevant relation
between the antecedent and the consequent of that
conditional is regarded to be logical).  A logical
conditional that is considered to be universally true,
in the sense of that logic, is also called an
entailment of that logic.  Indeed, the most intrinsic
difference between various different logic systems is
to regard what class of conditionals as entailments,
as Diaz pointed out: “The problem in modern logic
can best be put as follows: can we give an
explanation of those conditionals that represent an
entailment relation?” [6]  
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Logic deals with what entails what or what
follows from what.  Its aim is to determine the
correct conclusions of a given set of premises, i.e.,
to determine that which arguments are valid.
Therefore, the most essential and central concept in
logic is the logical consequence relation that
relates a given set of premises to those conclusions,
which validly follow from the premises.  It is the
difference between definitions (and formalizations) of
the logical consequence relation leads to different
logic systems, while it is the difference between
philosophical considerations (and motivations) on
logical validity criterion leads to different logical
consequence relations.  

In general, a formal logic system L consists
of a formal language, denoted by F(L), which is the
set of all well-formed formulas of L, and a logical
consequence relation, denoted by |−L, such that for
P⊆ F(L) and t∈ F(L), P |−L t means that within the
framework of L, taking P as premises one can obtain
t as a valid conclusion in the sense of L.  For a
formal logic system (F(L), |−L), a logical theorem t
is a formula of L such that φ |−L t where φ is the
empty set.  We use Th(L) to denote the set of all
logical theorems of L.  According to the
representation of the logical consequence relation of a
logic, the logic can be represented as a Hilbert style
formal system, a Gentzen natural deduction system,
a Gentzen sequent calculus system, or some other
type of formal system.  

Let ¬  be the negation certainly defined in a
formal logic system L.  L is said to be explosive if
and only if {A, ¬ A} |−L B for any two different
formulas A and B; L is said to be paraconsistent if
and only if it is not explosive [10].  Since the
definition of paraconsistency is so simple, all logic
systems can be simply divided into two classes:
explosive logics and paraconsistent logics.
Classical mathematical logic, its various classical
conservative extensions, intuitionistic logic, and
various modal logics are known to be explosive.
However, obviously, the definition of
paraconsistency concerns how to define the negation
of a proposition.  Also, how to interpret pair {A,
¬ A} semantically leads to various interesting
problems.  

3. Paraconsistent and Explosive Formal
Theories

Let (F(L), |−L) be a formal logic system and P⊆ F(L)
be a non-empty set of sentences (i.e., closed well-
formed formulas).  A formal theory with premises
P based on L, called an L-theory with premises P
and denoted by TL(P), is defined as TL(P) =df

Th(L)∪ ThL
e(P), and ThL

e(P) =df {et | P |−L et and
et∉ Th(L)} where Th(L) and ThL

e(P) are called the
logical part and the empirical part of the formal
theory, respectively, and any element of ThL

e(P) is
called an empirical theorem of the formal theory.
Fig.1 shows a formal theory.  

P

L

Th(L)

ThL
e(P)

Fig. 1   Formal theory

Let ¬  be the negation certainly defined in a
formal logic system L.  A formal theory TL(P) is
said to be directly inconsistent if and only if there
exists a formula A of L such that both A∈ P and
¬ A∈ P hold.  A formal theory TL(P) is said to be
indirectly inconsistent if and only if it is not
directly inconsistent but there exists a formula A of
L such that both A∈ TL(P) and ¬ A∈ TL(P).  A
formal theory TL(P) is said to be consistent if and
only if it is neither directly inconsistent nor
indirectly inconsistent.  In general, any formal
theory may be indirectly inconsistent, without
regard to that it is constructed as a purely deductive
science (e.g., classical mathematical logic) or it is
constructed based on some empirical or experimental
science.  

A formal theory TL(P) is said to be explosive
if and only if {A, ¬ A} |−L B for any two different
formulas A and B;  TL(P) is said to be
paraconsistent if and only if it is not explosive.  An
explosive formal theory is not useful at all.
Therefore, any meaningful formal theory constructed
based on an empirical or experimental science
should be paraconsistent.  Note that if a formal logic
system L is explosive, then any directly or
indirectly inconsistent L-theory TL(P) must be
explosive.  

For a given formal theory TL(P) and any
formula A of L, A is said to be explicitly accepted
by TL(P), denoted by e-acc(A, TL(P)), if and only if
A∈ P and ¬ A∉ P;  A is said to be explicitly rejected
by TL(P), denoted by e-rej(A, TL(P)), if and only if
A∉ P and ¬ A∈ P;  A is said to be explicitly
inconsistent with TL(P), denoted by e-inc(A,
TL(P)), if and only if both A∈ P and ¬ A∈ P;  A is
said to be explicitly independent of TL(P) and is
called an explicitly possible new premise for TL(P),
denoted by e-ind(A, TL(P)), if and only if both A∉ P
and ¬ A∉ P.  For any given formal theory TL(P) and
any formula A∉ P, A is said to be implicitly
accepted by TL(P), denoted by i-acc(A, TL(P)), if
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and only if A∈ TL(P) and ¬ A∉ TL(P);  A is said to
be implicitly rejected by TL(P), denoted by i-rej(A,
TL(P)), if and only if A∉ TL(P) and ¬ A∈ TL(P);  A
is said to be implicitly inconsistent with TL(P),
denoted by i-inc(A, TL(P)), if and only if both
A∈ TL(P) and ¬ A∈ TL(P);  A is said to be implicitly
independent of TL(P) and is called an implicitly
possible new premise for TL(P), denoted by i-ind(A,
TL(P)), if and only if both A∉ TL(P) and ¬ A∉ TL(P).  

According to the above definitions, an
explicitly accepted formula may be either implicitly
inconsistent or implicitly accepted;  an explicitly
rejected formula may be either implicitly
inconsistent or implicitly rejected;  an explicitly
inconsistent formula must be implicitly
inconsistent;  an explicitly independent formula may
be either implicitly inconsistent, or implicitly
accepted, or implicitly rejected, or implicitly
independent.  

Table 1 shows that there are 9 different
epistemic attitudes of any formula A of L for a formal
theory TL(P).  

4. On the Fundamental Logic to
Underlie Paraconsistent Reasoning
in Scientific Discovery

Until now, all the above discussions are general and
not dependent on any special kind of logic system.
Below we will discuss the role that various logic
systems can play in scientific discovery.  

The fundamental logic that can satisfactorily
underlie scientific reasoning has to satisfy at least
two important essential requirements.  First, as a
general logical criterion for validity of reasoning, the
logic must be able to underlie relevant reasoning as
well as truth-preserving reasoning in the sense of
conditional.  Second, the logic must be able to
underlie ampliative, paracomplete, and
paraconsistent reasoning;  in particular, from the
viewpoint of paraconsistency, the principle of
Explosion that everything follows from a
contradiction  must not be accepted by the logic as a
valid principle.  

Classical mathematical logic (CML for short)
was established in order to provide formal languages
for describing the structures with which
mathematicians work, and the methods of proof
available to them.  It is based on a number of
fundamental assumptions.  Some of the assumptions
concerning our subject are as follows:

The classical abstraction: The only properties of a
proposition that matter to logic are its form and its
truth-value.

The Fregean assumption: The truth-value of a
proposition is determined by its form and the truth-
values of its constituents.

The classical account of validity: An argument is
valid if and only if it is impossible for all its
premises to be true while its conclusion is false.

The Principle of Bivalence: There are exactly two
truth-values, TRUE and FALSE.  Every declarative
sentence has one or other, but not both, of these
truth-values.  

Obviously, the relevant relationship between
the premises and conclusion of an argument is not
accounted for by the classical validity criterion of
CML.  This results in that a reasoning based on
CML is not necessarily relevant, i.e., its conclusion
may be not relevant at all, in the sense of meaning
and context, to its premises.  In other words, in the
framework of CML, even if a reasoning is valid in
the sense of the classical account of validity, the
relevance relationship between its premises and its
conclusion cannot be guaranteed necessarily.  This
approach, however, may be suitable to searching and
describing a formal proof of a previously specified
theorem, but not necessarily suitable to forming a
new concept and discovering a new theorem because
the aim, nature, and role of the CML is descriptive
and non-predictive rather than prescriptive and
predictive.  

The explosiveness of CML is also a result of
the classical validity criterion and the principle of
bivalence.  The principle of Explosion (“ex falso
quodlibet”), i.e., the inference from A and ¬ A to B,
where A and B are any two formulas, is valid in
CML.  CML has a logical theorem (A∧¬ A)→B
corresponding to “ex falso quodlibet”.  As a result,
in the framework of CML, reasoning under
inconsistency is impossible because any formal
theory TCML(P) must be explosive if it is directly or
indirectly inconsistent.  However, as we have
pointed out, almost all formal theories based on
empirical or experimental sciences generally may be
indirectly inconsistent.  This problem also exists in
any classical conservative extension or non-classical
alternative of CML where (A∧¬ A)→B is accepted
as a logical theorem and Modus Ponens for material
implication serves as an inference rule.

Relevant logics were constructed during the
1950s~1970s in order to find a satisfactory way of
grasping the notion of conditional and avoiding the
so-called “implicational paradoxes” [1, 2, 7, 11].
Some major traditional relevant logic systems are
“system E of entailment”, “system R of relevant
implication”, and “system T of ticket entailment”.
A major feature of the relevant logics is that they
have a primitive intensional connective to represent
the notion of conditional and their logical theorems
include no implicational paradoxes.  The underlying
principle of the relevant logics is the relevance
principle, i.e., for any entailment provable in T , E,
or R, its antecedent and consequent must share a
sentential variable.  Variable-sharing is a formal
notion designed to reflect the idea that there be a
meaning-connection between the antecedent and
consequent of an entailment [1, 2, 7, 11].  It is this
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relevance principle that rejects the classical account
of validity and excludes those implicational
paradoxes from logical axioms or theorems of
relevant logics.  As a typical implicational paradox,
(A∧¬ A)→B is rejected by any relevant logic
because there is no variable shared by the antecedent
and consequent.  Therefore, the major traditional
relevant logic systems are paraconsistent.  

However, although the traditional relevant
logics have rejected those implicational paradoxes,
there still exist some logical axioms or theorems in
the logics, which are not natural in the sense of
conditional.  Such logical axioms or theorems, for
instance, are (A∧ B)⇒ A, (A∧ B)⇒ B,
(A⇒ B)⇒ ((A∧ C)⇒ B), A⇒ (A∨ B), B⇒ (A∨ B),
(A⇒ B)⇒  (A⇒ (B∨ C)) and so on, where ⇒  denotes
the primitive intensional connective in the logics to
represent the notion of conditional.  The present
author named these logical axioms or theorems
“conjunction-implicational paradoxes” and
“disjunction-implicational paradoxes” [3-5].  The
present author thinks that it is problematical to
regard these conditionals as entailments.  

Let us discuss the problem from the
viewpoint of paraconsistency.  Since (A∧ B)⇒ A and
(A∧ B)⇒ B are logical theorems of all traditional
relevant logics, (A∧¬ A)⇒ A and (A∧¬ A)⇒¬ A are
valid in the relevant logics. The definition of
paraconsistent logic is restrictive but not definitive,
i.e., it just says that any explosive logic is not a
paraconsistent logic, but not so definitively says
what a paraconsistent logic should be.  Now, we
have a question, if (A∧¬ A)⇒ A and (A∧¬ A)⇒¬ A
should be accepted as entailments by any
paraconsistent logic, then what philosophical
interpretations can be given to them?  

Moreover, for any formal theory TT(P),
TE(P), or TR(P), all conjunction-implicational and
disjunction-implicational paradoxes are logical
theorems of TT(P), TE(P), or TR(P).  As a result,
from any given premise A⇒ B, we can infer
(A∧¬ A)⇒ B, (A∧¬ A∧ D)⇒ B, and so on by using
the logical theorem (A⇒ B)⇒ ((A∧ C)⇒ B) of T , E,
and R and Modus Ponens for conditional, i.e.,
(A∧¬ A)⇒ B∈ TT/E/R(P), (A∧¬ A∧ D)⇒ B∈ TT/E/R(P),
... for any A⇒ B∈ TT/E/R(P).  That is, although
(A∧¬ A)⇒ B is not a logical theorem of any major
traditional relevant logic, it can certainly be an
empirical theorem of any formal theory with
premises P, which includes A⇒ B, based on any
major traditional relevant logic.  How should we
consider this situation?  Is it rational to our
everyday real-life situations and scientific
disciplines?  The present author's answer is “NO.”

Note that major paraconsistent logics Cn (1 ≤
n ≤ ω) proposed by da Costa are not relevant.
Implicational paradox A→(B→A), conjunction-
implicational paradoxes (A∧ B)⇒ A and (A∧ B)⇒ B,
and disjunction-implicational paradoxes A⇒ (A∨ B)
and B⇒ (A∨ B) are logical axioms of them [10].  

In order to establish a satisfactory logic
calculus of conditional to underlie relevant
reasoning, the present author has proposed some
strong relevant logics, named Rc, Ec, and Tc, and
shown their applications in knowledge engineering
[3-5].  As a modification of traditional relevant
logics R, E , and T , strong relevant logics Rc, Ec,
and Tc reject all conjunction-implicational
paradoxes and disjunction-implicational paradoxes
in R, E, and T , respectively. Therefore they are free
not only of implicational paradoxes but also of
conjunction-implicational and disjunction-
implicational paradoxes.  What underlies the strong
relevant logics is the strong relevance principle.
We say that a logic system satisfies the strong
relevance principle if for any logical theorem of the
logic, say A, every sentential variable in A occurs at
least once as an antecedent part and at least once as a
consequent part.  Those traditional relevant logics
that only satisfy the relevance principle but not the
strong relevance principle can be called the weak
relevant logics.  

From the viewpoint that the fundamental
logic to underlie scientific discovery should
satisfactorily underlie relevant, ampliative,
paracomplete, and paraconsistent reasoning, strong
relevant logics are hopeful candidates better than
classical mathematical logic, its various classical
conservative extensions, traditional (weak) relevant
logics, and traditional paraconsistent logics.  

5. Paraconsistent Reasoning Based on
Strong Relevant Logic in Scientific
Discovery

Perhaps the best known work on modeling
epistemic processes is the so-called AGM theory or
AGM model [8, 9, 12].  In the AGM model, an
epistemic state or belief set of an agent is represented
by a deductively closed and consistent set of
sentences in the propositional language of CML,
denoted by Cn(K) = K where K is a set of sentences
and Cn is the logical consequence relation of CML.
For a belief set K and a sentence A, there are three
basic operations in the model, i.e., expansion of K
by A, contraction of K by A, and revision of K by
A, where only two operations are independent.  The
model is thus defined by three groups of rationality
postulates for the three basic operations,
respectively, which are intended to grasp the notion
of belief changes.  In addition to these postulates,
there is an ordering defined on the beliefs, called the
epistemic entrenchment, which is used to ensure that
there exists a unique belief change satisfying the
constraints imposed by the postulates.  

The AGM model adopts CML, which is
explosive and has a great number of implicational
paradoxes, as the fundamental logic to underlie
epistemic processes.  As a result, it does not allow
inconsistent belief sets and cannot assure us of the
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validity of a belief in the form of conditional in any
epistemic state even if all premises in the primary
epistemic state are true or valid.  Our strong relevant
logic model of epistemic processes adopts predicate
strong relevant logic EcQ as the fundamental logic
to underlie epistemic processes.  EcQ is
paraconsistent and is free not only of implicational
paradoxes but also of conjunction-implicational and
disjunction-implicational paradoxes, and therefore, it
allows for inconsistent belief sets and assures us of
the validity of a belief in the form of conditional in
any epistemic state, if all premises in the primary
epistemic state are true or valid.  

The AGM model keeps a belief set consistent
at any time.  However, the postulate that every belief
set of an agent is consistent is too ideal, and
therefore, is not natural and rational.  To find out
some inconsistency in an existent theory and then to
reconstruct the theory such that the inconsistency
will not exist in the new theory is often an epistemic
process of a scientist in scientific discovery.  To
simply assume that every belief set of an agent is
consistent must result in the neglect of investigating
how to reason under inconsistency that is an
ordinary work of many scientists in scientific
discovery.  Indeed, it is impossible to investigate
the issue of reasoning under inconsistency within the
framework of CML.  Since EcQ is paraconsistent,
our strong relevant logic model does not require
belief sets must be consistent at any time.  

6. Concluding Remarks

The ultimate goal of our research is to provide
scientists with a computational methodology and
some computational tools to program their
epistemic processes in scientific discovery, and
therefore, to make scientific discovery become a
‘science’ and/or an ‘engineering’.  To this end,
based on the strong relevant logic model of
epistemic processes, we have proposed a novel
programming paradigm, named ‘Epistemic
Programming’ which is different from the existing
programming paradigms in that it regards
conditionals as the subject of computing, takes
primary epistemic operations as basic operations of
computing, and regards epistemic processes as the
subject of programming [5].  
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Table 1.   Possible epistemic attitudes

P TL(P) P TL(P) P TL(P) P TL(P)

A ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

¬A ∈ ∈ ∈ ∉ ∉ ∈ ∉ ∉

Attitudes e-inc i-inc e-inc i-acc e-acc i-inc e-acc i-acc

Attitudes (1) e-inc-i-inc impossible (2) e-acc-i-inc (3) e-acc-i-acc

P TL(P) P TL(P) P TL(P) P TL(P)

A ∈ ∉ ∈ ∉ ∈ ∉ ∈ ∉

¬A ∈ ∈ ∈ ∉ ∉ ∈ ∉ ∉

Attitudes e-inc i-rej e-inc i-ind e-acc i-rej e-acc i-ind

Attitudes impossible impossible impossible impossible

P TL(P) P TL(P) P TL(P) P TL(P)

A ∉ ∈ ∉ ∈ ∉ ∈ ∉ ∈

¬A ∈ ∈ ∈ ∉ ∉ ∈ ∉ ∉

Attitudes e-rej i-inc e-rej i-acc e-ind i-inc e-ind i-acc

Attitudes (4) e-rej-i-inc impossible (5) e-ind-i-inc (6) e-ind-i-acc

P TL(P) P TL(P) P TL(P) P TL(P)

A ∉ ∉ ∉ ∉ ∉ ∉ ∉ ∉

¬A ∈ ∈ ∈ ∉ ∉ ∈ ∉ ∉

Attitudes e-rej i-rej e-rej i-ind e-ind i-rej e-ind i-ind

Attitudes (7) e-rej-i-rej impossible (8) e-ind-i-rej (9) e-ind-i-ind


