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Abstract.  The purpose of any scientific reasoning
in any field is to find some both new and
interesting facts, concepts, and principles from
known facts or assumed hypotheses.  The logical
validity of reasoning is the only criterion that any
scientific reasoning must act according to in order
to obtain correct conclusions from the premises of
the reasoning.  It is logic that can underlie valid
reasoning.  Until now, many studies on
fundamental characteristics of scientific reasoning
are still based on classical mathematical logic or
its various classical conservative extensions.
However, the classical validity criterion underlying
the classical mathematical logic is not adequate to
accomplishing the purpose of a scientific reasoning.
This paper proposes that one should adopt the
strong relevance between conclusions and premises
as a logical validity criterion for any scientific
reasoning in order to accomplish the purpose of
scientific reasoning.  
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1. Introduction

The purpose of any scientific reasoning in any field
is to find some both new and interesting facts,
concepts, and principles from known facts or
assumed hypotheses.  The logical validity of
reasoning is the only criterion that any scientific
reasoning must act according to in order to obtain
correct conclusions from the premises of the
reasoning.  

Reasoning is the process of drawing new
conclusions from some premises, which are known
facts or assumed hypotheses.  In general, a reasoning
consists of a number of arguments (or inferences).

An argument (or inference) is a set of declarative
sentences consisting of one or more sentences as its
premises, which contain the evidence, and one
sentence as its conclusion.  In an argument, a claim
is being made that there is some sort of evidential
relation between its premises and its conclusion:
the conclusion is supposed to follow from the
premises, or equivalently, the premises are supposed
to entail the conclusion.  The correctness of an
argument is a matter of the connection between its
premises and its conclusion, and concerns the
strength of the relation between them.  Therefore,
the correctness of an argument depends on the
connection between its premises and its conclusion,
and neither on whether the premises are true or not,
nor on whether the conclusion is true or not.  Thus,
we have a fundamental question: What is the
criterion by which one can decide whether the
conclusion really does follow from the premises or
not?  A logically valid reasoning is a reasoning
such that its arguments are justified based on some
logical criterion in order to obtain correct
conclusions.  Today, there are so many different
logic systems established based on different
philosophical motivations.  As a result, a reasoning
may be valid on one logical criterion but invalid on
another.  

Generally, for any correct argument in
scientific reasoning as well as our everyday
reasoning, the conclusion of the argument must
somehow be relevant to the premises of that
argument, and vice versa.  On the other hand, for
any correct argument in a deductive reasoning, the
conclusion of the argument must be true if all
premises of that argument are true (in the sense of a
certainly defined meaning of truth), i.e., any correct
argument in a deductive reasoning must be truth-
preserving.

Proving is the process of finding a
justification for a previously explicitly specified
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statement from some known facts or assumed
hypotheses.  A proof is a description of a found
justification.  A logically valid proving is a proving
such that it is justified based on some logical
criterion in order to obtain a correct proof.  

Unfortunately, many studies in Computer
Science and Artificial Intelligence disciplines
confused and are still confusing reasoning and
proving.  Indeed, the most intrinsic difference
between the notion of reasoning and the notion of
proving is that the former is intrinsically prescriptive
and predictive while the latter is intrinsically
descriptive and non-predictive.  The purpose of
reasoning is to find some new conclusions
previously unknown or unrecognized, while the
purpose of proving is to find a justification for some
statement previously known or assumed.  Proving
has an explicitly defined target as its goal while
reasoning does not.  

Since a reasoning has no previously
explicitly defined target, the only criterion it must
act according to is to reason correct conclusions
when the premises are correct.  It is logic that can
underlie valid reasoning generally.  

Until now, many studies on fundamental
characteristics of scientific reasoning are still based
on classical mathematical logic (CML for short) or
its various classical conservative extensions.
However, the classical validity criterion underlying
the CML is not adequate to accomplishing the
purpose of a scientific reasoning.  This paper
proposes that one should adopt the strong relevance
between conclusions and premises as a logical
validity criterion for any scientific reasoning in order
to accomplish the purpose of scientific reasoning.  

2. The Notion of Conditional in
Scientific Reasoning

In various mathematical, natural, and social
scientific literature, it is probably difficult, if not
impossible, to find a sentence form that is more
generally used for describing various definitions,
propositions, theorems, and laws than the sentence
form of ‘if ... then ...’.  In logic, a sentence of the
form ‘if ... then ...’ is usually called a conditional
proposition or simply conditional which states that
there exists a relationship of sufficient condition
between the ‘if’ part and the ‘then’ part of the
sentence.  Mathematical, natural, and social
scientists always use conditionals in their
descriptions of various definitions, propositions,
theorems, and laws to connect a concept, fact,
situation or conclusion and its sufficient conditions.
Indeed, the major work of almost all scientists is to
discover some sufficient condition relations between
various phenomena, data, and laws in their research
fields.  

In general, a conditional must involve two
parts which are connected by the connective ‘if ...

then ... ’ and called the antecedent and the
consequent of that conditional, respectively.  The
truth-value of a conditional depends not only on the
truth-values of its antecedent and consequent but
also more essentially on a necessarily relevant and
conditional relation between them.  The notion of
conditional plays the most essential role in
reasoning because any reasoning form must invoke
it, and therefore, it is historically always the most
important subject studied in logic and is regarded as
the heart of logic [1].  

When we study and use logic, the notion of
conditional may appear in both the object logic (i.e.,
the logic we are studying) and the meta-logic (i.e.,
the logic we are using to study the object logic).  In
the object logic, there usually is a connective in its
formal language to represent the notion of
conditional, and the notion of conditional is also
usually used for representing a logical consequence
relation in its proof theory or model theory.  On the
other hand, in the meta-logic, the notion of
conditional, usually in the form of natural language,
is used for defining various meta-notions and
describe various meta-theorems about the object
logic.  

From the viewpoint of object logic, there are
two classes of conditionals.  One class is empirical
conditionals and the other class is logical
conditionals.  For a logic, a conditional is called an
empirical conditional of the logic if its truth-value,
in the sense of that logic, depends on the contents of
its antecedent and consequent and therefore cannot be
determined only by its abstract form (i.e., from the
viewpoint of that logic, the relevant relation between
the antecedent and the consequent of that conditional
is regarded to be empirical);  a conditional is called
a logical conditional of the logic if its truth-value,
in the sense of that logic, depends only on its
abstract form but not on the contents of its
antecedent and consequent, and therefore, it is
considered to be universally true or false (i.e., from
the viewpoint of that logic, the relevant relation
between the antecedent and the consequent of that
conditional is regarded to be logical).  A logical
conditional that is considered to be universally true,
in the sense of that logic, is also called an
entailment of that logic.  Indeed, the most intrinsic
difference between various different logic systems is
to regard what class of conditionals as entailments,
as Diaz pointed out: “The problem in modern logic
can best be put as follows: can we give an
explanation of those conditionals that represent an
entailment relation?” [8]

Recently, the present author proposed some
fundamental observations and assumptions on
scientific discovery processes and their automation
as follows [7]:

(1) New conditionals are epistemic goals of any
scientific discovery: Any scientific discovery
process must include an epistemic process to gain
knowledge of or to ascertain the existence of some
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empirical or logical conditionals previously
unknown or unrecognized.  Finding some new data
or some new fact is just an initial step in a scientific
discovery but not the scientific discovery itself.  

(2) Specific knowledge is the power of a scientist:
Any scientist who made a scientific discovery must
have worked in some particular scientific field and
more specifically on some problem in a particular
domain within the field.  There is no universal
scientist who can make scientific discoveries in
every field.  

(3) Any scientific discovery has an ordered
epistemic process: Any scientific discovery must
have, among other things, a process that consists of
a number of ordered epistemic activities that may be
contributed by many scientists in a long duration.
Any scientific discovery is neither an event occurring
in a moment nor an accumulation of disorderly and
disorganized inquiries.  

(4) Scientific reasoning is indispensable to any
scientific discovery: Any discovery must be
previously unknown or unrecognized before the
completion of discovery process.  Reasoning is the
only way to draw new conclusions from some
premises that are known facts or assumed
hypotheses.  There is no scientific discovery that
does not invoke scientific reasoning.  

(5) Scientific reasoning must be justified based
on some sound logical criterion: The most
intrinsic difference between discovery and proof is
that discovery has no explicitly defined target as its
goal.  Since any epistemic process in any scientific
discovery has no explicitly defined target, the only
criterion the epistemic process must act according to
is to reason correct conclusions from the premises.
It is logic that can underlie valid scientific
reasoning.  

(6) Scientific reasoning must be truth-preserving:
For any argument to be correct in scientific
reasoning as well as our everyday reasoning, the
conclusion of the argument must be true if all
premises of that argument are true.  The meaning of
truth must be in the sense of conditional as well as
fact.  

(7) Scientific reasoning must be relevant: For any
argument to be correct in scientific reasoning as well
as our everyday reasoning, the premises of the
argument must be in some way relevant to the
conclusion of that argument, and vice versa.  A
reasoning including some irrelevant arguments
cannot be said to be valid in general.  

(8) Scientific reasoning must be ampliative: A
scientific reasoning is intrinsically different from a
scientific proving in that the purpose of reasoning is
to find out some facts and conditionals previously
unknown or unrecognized, while the purpose of
proving is to find out a justification for some fact
previously known or assumed.  A reasoning in any
scientific discovery must be ampliative such that it

enlarges or increases the reasoning agent’s
knowledge in some way.  

(9) Scientific reasoning must be paracomplete:
Any scientific theory may be incomplete in many
ways, i.e., for some sentence ‘A’ neither it nor its
negation can be true in the theory.  Therefore, a
reasoning in any scientific discovery must be
paracomplete such that it does not necessarily reason
out a sentence even if it cannot reason out the
negation of that sentence.  

(10) Scientific reasoning must be paraconsistent:
Any scientific theory may be inconsistent in many
ways, i.e., it may directly or indirectly include some
contradiction such that for some sentence ‘A’ both it
and its negation can be true together in the theory.
Therefore, a reasoning in any scientific discovery
must be paraconsistent such that from a
contradiction it does not necessarily reason out an
arbitrary sentence.  

(11) Epistemic activities in any scientific
discovery process are identifiable and
distinguishable: Epistemic activities in any
scientific discovery process can be identified and
distinguished from other activities, e.g.,
experimental activities, as explicitly described
thoughts.  

(12) Normal scientific discovery processes are
possible: Any scientific discovery process can be
described and modeled in a normal way, and
therefore, it can be simulated by computer programs
automatically.  

(13) Specific knowledge is the power of a
program: Even if scientific discovery processes can
be simulated by computer programs automatically in
general, a particular computational process which
can adequately perform a particular scientific
discovery must take sufficient knowledge specific to
the subject under investigation into account.  There
is no generally organized order of scientific discovery
processes that can be applied to every problem in
every field.  

(14) Any automated scientific discovery process
must be valid: Any automated process of scientific
discovery has to assure us of the truth, in the sense
of not only fact but also conditional, of the final
result produced by the process if it starts from an
epistemic state where all facts, hypotheses, and
conditionals are regarded to be true or valid.  

(15) Any automated scientific discovery process
need an autonomous forward reasoning
mechanism: Any backward or refutation deduction
system cannot serve as an autonomous reasoning
mechanism to form or discover some completely
new things.  What we need in automating scientific
discovery is an autonomous forward reasoning
mechanism.  

According to the above fundamental
observations and assumptions on scientific discovery
processes and their automation, to establish a
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satisfactory criterion to evaluate whether or not the
conclusion of a scientific reasoning is correct in the
sense of conditional is the most crucial issue in
studies of fundamental characteristics of scientific
reasoning.  If we do not have such a criterion, how
can we evaluate and then decide whether the
conclusion of a scientific reasoning is correct or not?

3. The Classical Validity Criterion

The CML was established in order to provide
formal languages for describing the structures with
which mathematicians work, and the methods of
proof available to them.  It is based on a number of
fundamental assumptions.  Some of the assumptions
concerning our subject are as follows:

The classical abstraction: The only properties of a
proposition that matter to logic are its form and its
truth-value.

The Fregean assumption: The truth-value of a
proposition is determined by its form and the truth-
values of its constituents.

The classical account of validity: An argument is
valid if and only if it is impossible for all its
premises to be true while its conclusion is false.

The Principle of Bivalence: There are exactly two
truth-values, T and F.  Every declarative sentence
has one or other, but not both, of these truth-values.

Obviously, the relevant relationship between
the premises and conclusion of an argument is not
accounted for by the classical validity criterion of
CML.  As a result, for a reasoning based on CML
or its various classical conservative extensions, its
conclusion may be not relevant at all, in the sense of
meaning and context, to its premises.  In fact, in the
framework of CML, even if a reasoning is valid in
the sense of classical account of validity, the
relevance between its premises and its conclusion
cannot be guaranteed necessarily.  This approach,
however, may be suitable to searching and
describing a formal proof for a previously specified
theorem, but not necessarily suitable to forming a
new concept and discovering a new theorem because
the aim, nature, and role of the CML is descriptive
and non-predictive rather than prescriptive and
predictive.  

On the other hand, taking the above
assumptions into account, in CML, the notion of
conditional, which is intrinsically intensional but
not truth-functional, is represented by the truth-
functional extensional notion of material
implication (denoted by → in this paper) that is
defined as A→B =df ¬ (A∧¬ B) or A→B =df ¬A∨ B.
This definition of material implication, with the
inference rule of Modus Ponens for material
implication (from A and A→B to infer B), can
adequately satisfy the truth-preserving requirement
of CML, i.e., the conclusion of a valid reasoning
based on CML must be true (in the sense of CML)

if all premises of the reasoning are true (in the sense
of CML).  This requirement is basic and adequate
for CML to be used as a formal description tool by
mathematicians.  

However, the material implication is
intrinsically different from the notion of conditional
in meaning (semantics).  It is no more than an
extensional truth-function of its antecedent and
consequent but does not require that there is a
necessarily relevant and conditional relation between
its antecedent and consequent, i.e., the truth-value of
the formula A→B depends only on the truth-values
of A and B, though there could exist no necessarily
relevant and conditional relation between A and B.
It is this intrinsic difference in meaning between the
notion of material implication and the notion of
conditional that leads to the well-known
‘implicational paradox problem’ in CML.  The
problem is that if one regards the material
implication as the notion of conditional and regards
every logical theorem of CML as a valid reasoning
form or entailment, then a great number of logical
axioms and logical theorems of CML, such as
A→(B→A), B→(¬A∨ A), ¬A→(A→B),
(¬A∧ A)→B, (A→B)∨ (¬A→B), (A→B)∨ (A→¬B),
(A→B)∨ (B→A), ((A∧ B)→C)→((A→C)∨ (B→C)),
and so on, present some paradoxical properties and
therefore they have been referred to in the literature as
“implicational paradoxes” [1, 2, 9, 10].
“B→(¬A∨ A)” and “(¬A∧ A)→B” are two most
notorious paradoxes of material implication because
they are regarded as to be logically true in the sense
of CML but there is no relevant relationship at all
between their antecedents and consequents.  

Because all implicational paradoxes are
logical theorems of any CML-theory TCML(P), for a
conclusion of a reasoning from a set P of premises
based on CML, we cannot directly accept it as a
correct conclusion in the sense of conditional, even if
each of the given premises is regarded to be true and
the conclusion can be regarded to be true in the
sense of material implication.  For example, from
any given premise A, we can infer B→A, C→A, ...
where B, C, ... are arbitrary formulas, by using the
logical axiom A→(B→A) of CML and Modus
Ponens for material implication, i.e.,
B→A∈ TCML(P), C→A∈ TCML(P), ... for any
A∈ TCML(P).  However, from the viewpoint of
scientific reasoning as well as our everyday
reasoning, these inferences cannot be regarded to be
valid in the sense of conditional because there may
be no necessarily relevant and conditional relation
between B, C, ... and A and therefore we cannot say
“if B then A”, “if C then A”, and so on.
Obviously, no scientists did or will reason in such a
way in their scientific discovery.  This situation
means that from the viewpoint of conditional or
entailment, the truth-preserving property of
reasoning based on CML is meaningless.  

Consequently, in the framework of CML,
even if a reasoning is valid, neither the truth of its
conclusion in the sense of conditional nor the
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necessary relevance between its premises and its
conclusion can be guaranteed necessarily.  This is a
direct result of the classical account of validity.  

Note that all of various classical conservative
extensions of CML where the notion of conditional
is directly or indirectly represented by the material
implication have the similar problems as the above
problems in CML.  For example, the main aim of
Lewis's work beginning in 1912 on the
establishment of modern modal logic was to find a
satisfactory theory of implication which is better
than CML in that it can avoid those implicational
paradoxes.  A major reason to say that Lewis's plan
was not completely successful is that the two most
notorious paradoxes of material implication
“B→(¬A∨ A)” and “(¬A∧ A)→B” are still remained
in various modal logics as logical theorems in the
term of strict implication.  

4. The Relevant Validity Criterion

Generally, for any correct argument in scientific
reasoning as well as our everyday reasoning, the
premises of the argument must somehow be relevant
to the conclusion of that argument, and vice versa.
Informally, we may define that a reasoning is
relevant if and only if in every argument or inference
of that reasoning, the premises are relevant to the
conclusion in the sense of meaning.  

As we have pointed out, a reasoning based on
CML and its various classical conservative
extensions is not necessarily relevant even though it
is truth-preserving (again, in the sense of CML).

Relevant logics were constructed during the
1950s~1970s in order to find a satisfactory way of
grasping the notion of conditional and avoiding the
paradoxes of material (and strict) implication [1, 2,
9, 10].  Some major traditional relevant logic
systems are “system E of entailment”, “system R of
relevant implication”, and “system T of ticket
entailment”.  A major feature of the relevant logics is
that they have a primitive intensional connective to
represent the notion of conditional and their logical
theorems include no implicational paradoxes.  The
underlying principle of the relevant logics is the
relevance principle, i.e., for any entailment provable
in T , E , or R, its antecedent and consequent must
share a sentential variable.  Variable-sharing is a
formal notion designed to reflect the idea that there
be a meaning-connection between the antecedent and
consequent of an entailment [1, 2, 9, 10].  It is this
relevance principle that rejects the classical account
of validity and excludes those implicational
paradoxes from logical axioms or theorems of
relevant logics.  

However, although the traditional relevant
logics have rejected those implicational paradoxes,
there still exist some logical axioms or theorems in
the logics, which are not natural in the sense of
conditional.  Such logical axioms or theorems, for

instance, are (A∧ B)⇒ A, (A∧ B)⇒ B,
(A⇒ B)⇒ ((A∧ C)⇒ B), A⇒ (A∨ B), B⇒ (A∨ B),
(A⇒ B)⇒  (A⇒ (B∨ C)) and so on, where ⇒  denotes
the primitive intensional connective in the logics to
represent the notion of conditional.  The present
author named these logical axioms or theorems
“conjunction-implicational paradoxes” and
“disjunction-implicational paradoxes” [3, 5].  The
reason to regard these logical axioms or theorems of
the traditional relevant logics as paradoxes is that in
the antecedent of a conjunction-implicational
paradox there is a conjunct irrelevant to its
consequent, and in the consequent of a disjunction-
implicational paradox there is a disjunct irrelevant to
its antecedent.  This reason is similar to the case to
regard those logical axioms or theorems of CML,
whose antecedent are irrelevant to their consequent,
as paradoxes.  In other words, if we cannot regard a
conditional whose antecedent and consequent shares
no variable as an entailment, why we regard a
conditional where some variable does not shared by
its antecedent and consequent as an entailment
without resistance?  It seems that the problem
concerned with conjunction-implicational paradoxes
has had some historic discussion.  For example,
Nelson 1930 has objected to taking (A∧ B)⇒ B as
valid on the grounds that a portion of the antecedent
is not relevant to the conclusion [1].  However,
relevant logicians consider that there certainly is a
sense of relevance between A∧ B and B, i.e., if any of
the conjoined premises are used in arriving at the
conclusion, then the conjoined premises are relevant
to the conclusion [1].

Similar to the case of CML, for any formal
theory TT(P), TE(P), or TR(P), all conjunction-
implicational and disjunction-implicational
paradoxes are logical theorems of TT(P), TE(P), or
TR(P).  As a result, for a conclusion of a reasoning
from P based on T , E , or R, we cannot directly
accept it as a valid conclusion in the sense of
conditional, even if each of given premises is true.
For example, from any given premise A⇒ B, we can
infer (A∧ C)⇒ B, (A∧ C∧ D)⇒ B, and so on by using
the logical theorem (A⇒ B)⇒ ((A∧ C)⇒ B) of T , E,
and R and Modus Ponens for conditional, i.e.,
(A∧ C)⇒ B∈ TT/E/R(P), (A∧ C∧ D)⇒ B∈ TT/E/R(P), ...
for any A⇒ B∈ TT/E/R(P).  However, from the
viewpoint of scientific reasoning as well as our
everyday reasoning, this reasoning is not necessarily
regarded as valid in the sense of conditional because
there may be no necessarily relevant and conditional
relation between C, D, ... and B and therefore we
cannot say “if A and C then B”, “if A and C and D
then B”, and so on.  

Therefore, because the traditional relevant
logics accept conjunction-implicational and
disjunction-implicational paradoxes as logical
theorems, a reasoning based on the relevant logics
still may be irrelevant.

In order to establish a satisfactory logic
calculus of conditional to underlie relevant
reasoning, the present author has proposed some
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strong relevant logics, named Rc, Ec, and Tc, and
shown their applications in knowledge engineering,
in particular, scientific discovery [3-7].  As a
modification of traditional relevant logics R, E , and
T , strong relevant logics Rc, Ec, and Tc reject all
conjunction-implicational paradoxes and
disjunction-implicational paradoxes in R, E , and T,
respectively.  Therefore they are free not only of
implicational paradoxes but also of conjunction-
implicational and disjunction-implicational
paradoxes.  What underlies the strong relevant
logics is the strong relevance principle.  We say
that a logic system satisfies the strong relevance
principle if for any logical theorem of the logic, say
A, every sentential variable in A occurs at least once
as an antecedent part and at least once as a
consequent part.  Those traditional relevant logics
that only satisfy the relevance principle but not the
strong relevance principle can be called the weak
relevant logics.  

We can prove the following theorem [11].  

Definition   A is a consequent part of A;  if ¬B is a
consequent {antecedent} part of A, then B is an
antecedent part {consequent part} of A;  if B⇒ C is a
consequent {antecedent} part of A, then B is an
antecedent {consequent} part of A, and C is a
consequent {antecedent} part of A;  if either B∧ C or
B∨ C is a consequent {antecedent} part of A, then
both B and C are consequent {antecedent} parts of
A.  

Theorem   If A is a logical theorem of Rc, Ec, or
Tc, then every sentential variable in A occurs at
least once as an antecedent part and at least once as a
consequent part.  

Therefore, in the framework of strong relevant
logics, the conclusion of a reasoning based on a
strong relevant logic must be strongly relevant to its
premises in the sense of the strong relevance
principle.  As a result, for such a conclusion, we can
directly accept it as correct and do not need to
investigate whether it is relevant to its premises or
not.  

5. Strong Relevance as a Logical
Validity Criterion for Scientific
Reasoning

The purpose of any scientific reasoning in any field
is to find some both new and interesting facts,
concepts, and principles from known facts or
assumed hypotheses.  The logical validity of
reasoning is the only criterion that any scientific
reasoning must act according to in order to obtain
correct conclusions from the premises.  It is a
difficult task and open problem to formally define
that the conclusion of a reasoning is new and
interesting.  But at least, as we have presented in
Section 2, a scientific reasoning must be truth-

preserving, relevant, ampliative, paracomplete, and
paraconsistent.  

The CML cannot underlie truth-preserving
reasoning in the sense of conditional because in the
framework of CML, even if a reasoning is valid in
the sense of CML, the truth of its conclusion in the
sense of conditional can be guaranteed necessarily.
The truth-preserving property of a reasoning based
on the CML is a matter of extensional truth-function
but not in the sense of conditional, it is meaningless
from the viewpoint of conditional or entailment.  

The CML cannot underlie relevant reasoning
because in the framework of CML, even if a
reasoning is valid in the sense of CML, the
necessary relevance between its premises and its
conclusion can be guaranteed necessarily.  

The CML cannot underlie ampliative
reasoning because the conditional is represented in
CML by the material implication which is no more
than an extensional truth-function of its antecedent
and consequent.  As a result, a reasoning based on
the logic must be circular.  For example, Modus
Ponens for material implication is usually
represented in CML as “from A and A→B to infer
B.”  According to the extensional truth-functional
semantics of the material implication, if we know
“A is true” but do not know the truth-value of B,
then we cannot decide the truth-value of “A→B.”
In order to know the truth-value of B using Modus
Ponens for material implication, we have to know
the truth-value of B before the reasoning is done!  

Reasoning with partial (and some time
inconsistent) information is the rule rather than the
exception in our real-life situations and most
scientific disciplines.  The CML cannot underlie
paracomplete reasoning because it is a logic about
tautologies of truth-function; it assumes that all the
information and the truth-value of any sentence are
on the table before any deduction is performed.  

The CML cannot underlie paraconsistent
reasoning because (¬A∧ A)→B, which is a typical
paradox of material implication so-called ‘ex falso
quodlibet’, is a logical theorem of it.  As a result,
in the framework of CML, reasoning under
inconsistency is impossible because any formal
theory TCML(P) must be explosive if it is directly or
indirectly inconsistent.  However, almost all formal
theories based on empirical or experimental sciences
generally may be indirectly inconsistent.  This
problem also exists in any classical conservative
extension or non-classical alternative of CML where
(A∧¬ A)→B is accepted as a logical theorem and
Modus Ponens for material implication serves as an
inference rule.  

Based on the above discussions, we can say
that the classical validity criterion underlying the
CML is only a necessary but not sufficient condition
for scientific reasoning; it is not completely adequate
to accomplishing the purpose of a scientific
reasoning.  In fact, the CML was established in
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order to provide formal languages for describing the
structures with which mathematicians work, and the
methods of proof available to them.  It is not an
original aim of the CML to underlie truth-preserving
(in the sense of conditional), relevant, ampliative,
paracomplete, and paraconsistent reasoning.  It is
obviously problematical to use the CML freely to
those areas which exceed its defined application area.  

As we have presented in Section 2, one of
fundamental observations and assumptions on
scientific discovery processes and their automation
proposed by the present author is “Any automated
scientific discovery process need an autonomous
forward reasoning mechanism.”  

Any forward deduction system based on the
CML or its any classical conservative extension
must be ineffective and inefficient.  In the framework
of the CML, there is no guarantee that the
conclusion of a reasoning is necessarily relevant to
its premises, even if the reasoning is valid in the
sense of the CML.  This intrinsic characteristic of
CML is a fatal defect for forward reasoning
mechanism because any forward deduction system
based on the CML must produce so many
conclusions that are not relevant to premises at all.

On the other hand, relevant logics, in
particular, strong relevant logics, can satisfactorily
underlie truth-preserving (in the sense of
conditional), relevant, ampliative, paracomplete, and
paraconsistent reasoning, and forward deduction [3-
7].  From the viewpoint to regard a logically valid
reasoning as the process of drawing new and correct
conclusions from some premises which are known
facts or assumed hypotheses, we can say that any
meaningful scientific reasoning required by a
problem solving process in the real world must be
relevant and ampliative.  In order to accomplish the
purpose of scientific reasoning, we should adopt not
only the truth-preserving (in the sense of
conditional) but also the strong relevance between
conclusions and premises as a logical validity
criterion for any scientific reasoning.  

6. Concluding Remarks

We have pointed out why a reasoning based on the
CML, its various classical conservative extensions,
and traditional (weak) relevant logics may be
irrelevant, and shown that a reasoning based on the
strong relevant logics is relevant.  

The fundamental logic underlying the
Information Science, in particular, the Knowledge
Science, in the 21st century should support relevant
and ampliative reasoning as well as truth-preserving
reasoning.  Until now, the only family of logic to
take relevance in reasoning into account is relevant
logic.  As a knowledge representation and reasoning
tool, relevant logic, in particular, strong relevant
logics, has many useful properties that the CML and
its various conservative extensions do not have, and

therefore, it is most hopeful candidate as the
fundamental logic to underlie those advanced
information/knowledge systems where the relevant
reasoning plays a crucial role.  
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