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Abstract This paper introduces a two-

dimensional modal logic to represent agents’

knowledge in distributed environments. The

agent’s knowledge was formally defined

in [5], where modal logic was used to

model knowledge in synchronous distributed

message-passing systems. The logic we

present here can properly describe the prop-

erties of the agent’s knowledge in asyn-

chronous environments. An axiomatic sys-

tem to describe such kind of knowledge is

also presented.
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1 Introduction

The research in modal logic for knowledge rep-
resentation has grown in the last two decades
due to the work of J. Halpern, R. Fagin, Y.
Moses and M. Vardi [5]. The formal systems
of Halpern et al is mainly used to represent
the knowledge of agents that communicate to
each other through message passing in a dis-
tributed system. The logic enables one to rep-
resent the so-called interactive knowledge, that
is, not only what an agent himself knows about
the world, but also what he knows the others
know.
The most complex knowledge interaction is

the common knowledge. A fact φ is defined to
be common knowledge in a group of agents if

everybody knows, and everybody knows that
everybody knows, and everybody knows that
everybody knows that everybody knows, and
this goes on indefinitely.
Common knowledge is a very intuitive con-

cept but it is not a trivial task at all to for-
malize it. In the work of Halpern et al, it is
proved that common knowledge requires co-
ordinated actions and simultaneity to be at-
tained. Hence, common knowledge can not be
achieved in asynchronous systems, because si-
multaneity is not applicable in such environ-
ments.
If on the one hand the main application of

Halpern et al knowledge logic is in the con-
text of synchronous systems, where simultane-
ity is assumed, on the other hand we propose
a logic to represent other concepts of knowl-
edge that can be achieved in asynchronous en-
vironments. One of these such concepts is the
concurrent common knowledge, defined in the
paper by Panangaden and Taylor [8].

2 Model for Asynchronous
Distributed Multi-Agent
System

The model for asynchronous environments
used here is based on Lamport’s definitions
of time and causality [6]: time is given by
causality relations among events; and consis-
tent global states are consistent cuts in an



asynchronous run hypergraph.
Consider a simple model for an asyn-

chronous distributed system 1:

A network (fifo channels) with m agents;
A set R of asynchronous runs;
A set E of events;
A set C of consistent cuts.

The hypergraph in Figure 1 illustrates one
possible run of the PIF (propagation of infor-
mation with feedback) algorithm for 3 agents.
The goal of PIF algorithm is to make the mes-
sage M known to all the agents in the system,
and, assuming that just one agent initiates the
algorithm, to inform the initiator when M has
reached all of them.

 Consistent Cut
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Figure 1: Consistent Cut

The dots represent events - when an agent
sends and/or receives messages. The arrows
establish a causality relation among events. A
cut represents a global state and divides the
graph into two sets of events, EP and EF ,
those which happen before (in the past of) and
those which happen after (in the future of) the
present cut. Intuitively, we can think about a
consistent cut as a global state in which there
are no messages from the future to the past.

1A complete description of a model for asynchronous
distributed systems can be found in [1]

In this model, an agent can not distinguish
between two cuts if his local state is the same
in both cuts. If so, the cuts are said to be in-
distinguishable according to the agent’s point
of view. There are distinct possible runs de-
pending on the order in which messages reach
the agents - see figure 2.

3 Products of Modal Logics

We think about asynchronous systems as a
two-dimensional world. That is, we reason
about the knowledge under the perspective of a
cartesian pair (r, c), a run-cut pair. In a modal
logic approach, that means the interpretation
of possible worlds, where the agent’s knowl-
edge is evaluated, are pairs (r, c) representing
a state: a consistent cut c in an asynchronous
run r.
The two-dimensional approach of knowledge

in asynchronous multi-agent distributed sys-
tems can be formalized using the concept of
products of modal logics. Many-dimensional or
multidimensional logics are a kind of cartesian
product of modal logics. In multidimensional
logics, the possible worlds, or states, are tuples
representing dimensions where logical formulas
are evaluated. The foundations of multidimen-
sional logics are found in Segerberg [9].
Products of modal logics are formally de-

fined in [10]. Let L be a set of formulas and
F(L) the class of frames validating L, that is,
for all wff α ∈ L, α is valid in each frame of the
class F. Conversely, all formulas valid in a cer-
tain frame F constitute the modal logic L(F ).
The modal logic L(F) for a class of frames F is
defined as the intersection

⋂
{L(F ) | F ∈ F}.

Definition 3.1 Products of Modal Logics.
Let F1 = (W1,∼=i) and F2 = (W2,�j) be two

propositional frames. The product of frames
[10] is the frame F1 ×F2 = (W1 ×W2,	i,≈j),
where:
	i= {((x, z), (y, z))|x ∼=i y};
≈j= {((z, x), (z, y))|x �j y}.
Let L1 and L2 be multimodal logics, F(L1)

the class of frames validating L1 and F(L2)



the class of frames validating L2. The prod-
uct of logics L1 and L2 is the logic L1 × L2 =
L(F(L1)× F(L2)).

Results from V. Shehtman’s and D. Gab-
bay’s paper [10] on axiomatizing products of
modal logics follow.

Definition 3.2 Commutative Logics.
For L1 n-modal and L2 m-modal logics:
[L1, L2] = L1 ∗ L2 + C1

ij + C
2
ij, where:

C1
ij = (�i�j+np↔ �j+n�ip),
C2

ij = (♦i�j+np→ �j+n♦ip),
1 ≤ i ≤ n , 1 ≤ j ≤ m.

We say the logics L1, L2 are commutatives
if L1 × L2 = [L1, L2].

Definition 3.3 PTC Formulas and PTC Log-
ics.

A modal formula is pseudo-transitive if it
has the form:
�1�kp → �2p, where p ∈ Prop, �1 =

♦i, . . . ,♦j, �2 = �i, . . . ,�j are sequences of
modal operators (possibly empty).

A PTC formula is a pseudo-transitive or
closed formula.

A PTC logic is a modal logic axiomatized by
PTC formulas.

Theorem 3.1 Axiomatization of the Product
of PTC Modal Logics [10].

The logic resulting from the product of two
PTC (pseudo-transitive or closed ) modal logics
is commutative.

That is, if L1 , L2 are PTC then L1 ×L2 =
[L1, L2].

4 Semantics for Knowledge in
Asynchronous Systems

To model the desired two-dimensional knowl-
edge approach we need a two-dimensional mul-
timodal logic. Thus, the dimensions considered
are runs and cuts.
Once this semantics is based on Kripkean

semantics of possible worlds, we have possibil-
ity or accessibility relations. There are three

possibility relations, each one respectively as-
sociated to a modal operator. These relations
are equivalence relations, reflecting the concept
of indistinguishable cuts or runs according to
the agent’s point of view. Hence, the possibil-
ity relations are, in fact, equivalence relations
for indistinguishability in each level of knowl-
edge considered: the run dimension, the cut
dimension, and the run-cut dimension.

Walking in the run dimension would give us
the possible consistent cuts of that run. In
our modal product, runs are in the horizontal
axis - the corresponding modal operator is Hi,
and the indistinguishable cuts according to the
agent’s point of view is given by the horizontal
relation 	i.
On the other hand, walking on the cut di-

mension would correspond to having the runs
where a consistent cut occurs. Thus, consistent
cuts are represented in the vertical axis, and
the corresponding modal operator is Vi. The
indistinguishability vertical relation ≈i refers
to the indistinguishable runs for the agent, tak-
ing a particular cut in consideration.
We introduce the definition of closed sub-

product of modal logics in order to formalize
the kind of knowledge that we are interested
in. The closed sub-product of modal logics is
similar to the former product, with two addi-
tional features: an extra relation, the reflexive-
transitive-symmetric closure under the two ba-
sic relations, and a subset A of the cartesian
product X × Y .
The closure relation gives us new features:

for instance, representing knowledge properties
according to indistinguishable pairs (r, c). The
modal operator Ki is related to the indistin-
guishability inter-dimensional relation ∼i, and
represents what an agent knows under indistin-
guishable consistent cuts in all possible runs.
There are some pairs (r, c) that, in fact, may

not occur in the system. If so, we restricted
the evaluation of the formulas to what we call
the reasonable pairs, that is, the pairs (r, c)
that really make sense. We define the subset
A ⊆ X × Y denoting these reasonable pairs.
The idea is to make the modal operators Hi

and Vi range only over the reasonable pairs in



A, whereas the operators H i and V i range over
the whole cartesian product W = X × Y .

Definition 4.1 Closed Sub-product of Modal
Logics.

Consider the propositional frames F1 =
(X,∼=i) and F2 = (Y,�i) for L1 and L2. The
closed sub-product of the frames is the frame
F1 ⊗ F2 = (W,	i,≈i,∼i, A), where:

1. W = X×Y : is the set of all states (x, y);

2. A ⊆ W = X × Y : is a subset of states
(x, y);

3. 	i= {((x, z), (y, z))|x ∼=i y};

4. ≈i= {((z, x), (z, y))|x �i y};

5. ∼i⊆ {(	i + ≈i)*}, where (	i + ≈i)*
denotes the reflexive-transitive-symmetric
closure under the union of 	i and ≈i;

Let L1 and L2 be multimodal logics, F(L1)
the class of frames validating L1 and F(L2) the
class of frames validating L2. The closed sub-
product of logics L1 and L2 is the logic L2

m =
L(F(L1)⊗ F(L2)).

Definition 4.2 Model for Closed Sub-product
of Modal Logics.

Consider L1 and L2 multimodal logics with
sets of primitives Prop1 and Prop2, F1 ∈
F(L1) and F2 ∈ F(L2), respectively. A model
M over F = F1 ⊗ F2 is a pair M = (F, v),
where v : Prop → 2W is an assignment func-
tion, Prop = Prop1 ∪ Prop2. For each p ∈
Prop = Prop1 ∪Prop2, v(p) is the set of pairs
(x, y), (x, y) ∈W = X × Y , where p is true.

Many known modal logics are PTC, such as
D,K4,S4, T ,B,S5, and others. Hence, two-
dimensional products such as T × T , S4×S4,
S5× S5 are commutatives.
Our main interest is in S5×S5. As shown in

[5], a modal logic for knowledge, with an equiv-
alence relation as the accessibility relation, can
be axiomatized by system S5m with m modal
operators. We define the axiomatic system S2

m

for the two-dimensional knowledge logic as an
extension of the product S5m × S5m.

Another important semantic consideration
is the meaning of knowledge in the Ki modal
operator. In general, knowledge is associated
with the agent’s local state. For instance, in
[8], the agent’s local state is defined as his lo-
cal history. In our semantics, the knowledge in-
terpretation is associated with the agent’s past
view - all events in his local past history, re-
gardless the order they happened.
Formal definitions of the two-dimensional

semantics follow.

Definition 4.3 Two-Dimensional Logic L2
m.

Let L2
m be the smallest set of formulas

containing ∆, the set of primitives Prop =
PropH ∪ PropV , closed under negation, con-
junction and the modal operators H i, V i and
Ki, where i = 1, . . . ,m.

Definition 4.4 Satisfiability in L2
m.

Suppose 	i, ≈i and ∼i are equivalence rela-
tions, referred as indistinguishability relations,
between two states (r, c) and (r′, c′) in a closed
sub-product of two modal frames, as defined in
4.1.

Let F = (W,	i,≈i,∼i, A) be a frame for
L2

m and let M be a model over F . A formula
α ∈ L2

m is true in [M, (r, c)], [M, (r, c)] |= α,
for (r, c) ∈W ⊆ R× C, when:

1. [M, (r, c)] |= p ⇔ (r, c) ∈ v(p), where p ∈
Prop;

2. [M, (r, c)] |= α ∧ β ⇔ [M, (r, c)] |= α and
[M, (r, c))] |= β;

3. [M, (r, c)] |= ¬α⇔ [M, (r, c)] �|= α;

4. [M, (r, c)] |= H iα ⇔ ∀(r′, c′){((r, c) 	i

(r′, c′))⇒ [M, (r′, c′)] |= α};

5. [M, (r, c)] |= V iα ⇔ ∀(r′, c′){((r, c) ≈i

(r′, c′))⇒ [M, (r′, c′)] |= α};

6. [M, (r, c)] |= ∆ ⇔ (r, c) ∈ A ⊆ W = R ×
C;

7. [M, (r, c)] |= Hiα ⇔ [M, (r, c)] |= ∆ and
[M, (r, c)] |= H iα;



8. [M, (r, c)] |= Viα ⇔ [M, (r, c)] |= ∆ and
[M, (r, c)] |= V iα;

9. [M, (r, c)] |= Qiα⇔ [M, (r, c)] |= Hiα and
[M, (r, c)] |= Viα;

10. [M, (r, c)] |= Kiα ⇔ [M, (r, c)] |=
∆ and ∀(r′, c′){((r, c) ∼i (r′, c′)) ⇒
[M, (r′, c′)] |= α}.

5 Axiomatic System for Two-
Dimensional Knowledge

The two-dimensional multimodal system S2
m

has three basic modalities. The modalities
Hi, Vi and Ki refer respectively to the prop-
erties of the horizontal, vertical and two-
dimensional worlds. Intuitively, Hi, Vi and Ki

represent, respectively, the knowledge in the
run dimension, in the cut dimension and ac-
cording to the two-dimensional run-cut per-
spective. In fact, we use the knowledge repre-
sentation semantics because it was the initial
motivation, but we think the theory has possi-
bly many other interpretations.
The axiomatic system S2

m follows.

Axioms.

0 All the tautologies from propositional logic

1 (H iα ∧H i(α→ β))→ H iβ

2 H iα→ α

3 H iα→ H iH iα

4 ¬H iα→ H i¬H iα

5 (V iα ∧ V i(α→ β))→ V iβ

6 V iα→ α

7 V iα→ V iV iα

8 ¬V iα→ V i¬V iα

9 (Kiα ∧Ki(α→ β))→ Kiβ

10 Kiα→ α

11 Kiα→ KiKiα
2

2this axiom can be obtained from 19 and 20.

12 ¬Kiα→ Ki¬Kiα

13 H iV jα↔ V jH iα

14 ¬H i¬V jα→ V j¬H i¬α

15 ¬V i¬Hjα→ Hj¬V i¬α

16 Hiα↔ ∆ ∧H iα

17 Viα↔ ∆ ∧ V iα

18 Qiα↔ Hiα ∧ Viα

19 Kiα↔ QiKiα

20 Ki(α→ Qiα)→ (α→ Kiα)

where i, j = 1, . . . ,m.

Rules.

R0 From  α infer all uniform substitution

R1 From  α, α→ β derive β (modus ponens)

R2 From  α infer H iα (horizontal general-
ization)

R3 From  α infer V iα (vertical generaliza-
tion)

R4 From  α infer Kiα (two-dimensional gen-
eralization)

In such system, knowledge is also defined
in terms of fixed point formulas. Although,
knowledge refers to a bidimensional approach,
representing what and agent knows in all in-
distinguishable states (r, c). We have sound-
ness and completeness proofs for system S2

m.
For completeness, we can show the finite model
property, and then we have, in addition, decid-
ability.

6 Example

An example to illustrate knowledge according
to the two-dimensional approach was built. It
is an application of PIF (propagation of infor-
mation with feedback) distributed algorithm
[1]. The example considers three agents exe-
cuting the PIF algorithm with one initiator and
fifo reliable channels linking the three agents.



At first, we define the set E of events to char-
acterize message exchanging among the agents.
In our model, the events have the same defini-
tion regardless the run they can occur.
Suppose sendj

i (M) means “agent i sends
message M to agent j”, and receiveji (M)
means “agent i receives messageM from agent
j”. Let E = {e1, e2, e3, e4, e5, e6, e7}, where:
e1 - send21(M), send31(M)
e2 - receive12(M), send32(M)
e3 - receive23(M), send13(M)
e4 - receive13(M), send23(M)
e5 - receive32(M), send12(M)
e6 - receive31(M)
e7 - receive21(M)
We built the sets Ei, i = 1, 2, 3, where Ei

represents the possible events for agent i:
E1 = {e1, e6, e7}
E2 = {e2, e5}
E3 = {e3, e4}
Enumerating the possible runs for the

PIF algorithm we get the set R =
{r1, r2, r3, r4, r5, r6}. See figure 2 for three of
the six runs.
The possible consistent cuts in all runs in R

were also enumerated. Note that each cut is a
partition of the events in E into two sets EP

and EF . It follows the enumeration for each of
the sixteen cuts in the set C. 3:
c1: EP = {e1} ; EF = {e2, e3, e4, e5, e6, e7}
c2: EP = {e1, e2} ; EF = {e3, e4, e5, e6, e7}
c3: EP = {e1, e2, e3} ; EF = {e4, e5, e6, e7}
c4: EP = {e1, e2, e3, e4} ; EF = {e5, e6, e7}
c5: EP = {e1, e2, e3, e4, e5} ; EF = {e6, e7}
c6: EP = {e1, e2, e3, e4, e5, e6} ; EF = {e7}
c7: EP = {e1, e2, e3, e4, e5, e6, e7} ; EF = {}
c8: EP = {e1, e2, e3, e6} ; EF = {e4, e5, e7}
c9: EP = {e1, e2, e3, e6, e4} ; EF = {e5, e7}
c10: EP = {e1, e2, e3, e4, e5, e7} ; EF = {e6}
c11: EP = {e1, e4} ; EF = {e2, e3, e5, e6, e7}
c12: EP = {e1, e2, e4, e5} ; EF = {e3, e6, e7}
c13: EP = {e1, e2, e4} ; EF = {e3, e5, e6, e7}
c14: EP = {e1, e2, e4, e5, e7} ; EF = {e3, e6}
c15: EP = {e1, e4, e5} ; EF = {e2, e3, e6, e7}

3The cut c0: EP = {} ; EF =
{e1, e2, e3, e4, e5, e6, e7} corresponding to the ini-
tial state was not considered.

c16: EP = {e1, e4, e5, e7} ; EF = {e2, e3, e6}
For agent 1, consider that knowledge is as-

sociated to the agent’s past view. Thus, we
have the following sets of past visions VP (c1i )
for agent 1 in cuts i:
VP (c1i ) = {e1}, i = 1, 2, 3, 4, 5, 11, 12, 13, 15;
VP (c1j ) = {e1, e6}, j = 6, 8, 9;

VP (c1k) = {e1, e7}, k = 10, 14, 16;
VP (c1l ) = {e1, e6, e7}, l = 7.
The accessibility relation says that two cuts

are related if they are indistinguishable ac-
cording to the agent’s point of view, that is,
if the agent has the same past view in both
cuts. If so, the sets i, j, k, l of cuts listed above
are equivalence classes representing knowledge
states for the agent. Thus, in each of the sets
i, j, k, l the agent knows the same things. We
built graphs, one for each agent, mapping these
equivalence classes of knowledge. Figure 3 is
a reflexive-transitive reduction graph (that is,
no reflexive-transitive links were represented)
of the equivalence classes for agent 1.

7 Conclusions

The axiomatic system S2
m is suitable to repre-

sent the properties of an agent’s knowledge and
group knowledge in asynchronous systems be-
cause the semantics is based on a model which
considers consistent cuts and asynchronous
runs to define time in multi-agent distributed
environments.
We have used the concept of multidimen-

sional logics to deal with the two-dimensional
approach of knowledge. Thus, it is possible to
describe properties of each projected dimen-
sion - runs and cuts - and also the features
of the product dimension. The closed sub-
product of logics was defined to make the nec-
essary adjustments. Hence, the resulting se-
mantics results in a more powerful one.
As future developments, we would like

to build a temporal version of the two-
dimensional knowledge logic, which would bet-
ter describe the evolution of knowledge acqui-
sition over time.
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