Reasoning about Events and Knowledge in Distributed
Systems

Carla A. D. M. Delgado*

Mario R. F. Benevides*'
COPPE-Sistemas*
Instituto de Matematical
Universidade Federal do Rio de Janeiro (UFRJ)
PoBox 68.511, ZIP Code 21.945-970, Rio de Janeiro, RJ, Brazil
{delgado, mario}@cos.ufrj.br

Abstract This work focuses on the handling of
knowledge and time in distributed asynchronous
systems using logics, specifically on fully asyn-
chronous distributed memory systems. An event-
based logic for no-fault asynchronous systems is
presented, and a set of event-based temporal oper-
ators are defined providing a greater temporal ex-
pressivity to the logic, even considering time under
the few restrictions of asynchronous model. An ap-
plication involving knowledge in distributed asyn-
chronous systems was modelled using this logic, il-
lustrating its expressivity and applicability.
Keywords:  distributed systems, modal logic,
knowledge representation

1 Introduction

The research in modal logic for knowledge rep-
resentation has grown in the last two decades
mainly due to the work of Halpern, Fagin,
Moses and Vardi [1]. However, the applica-
tion of their logic takes place in the context of
the synchronous systems, having simultaneity
as the basis for concepts like common knowl-
edge.

In [3], an extension of [1] with temporal op-
erators is presented. This new logic allows for
expressing and reasoning about the dynamic of
knowledge evolution in time. Unfortunately,
this approach is more suitable for reasoning

about knowledge in time in distributed syn-
chronous systems.

Reasoning about the tasks in a distributed
system at knowledge level offers some advan-
tages like abstracting from system’s implemen-
tation details or even from agent’s nature. A
formal approach at knowledge level allows for
analyzing the problem’s properties before im-
plementing it. On this sense, temporal logics
have proved to be useful for specifying concur-
rent systems, because they can describe order-
ing of events in time without introducing time
explicitly.

The main contribution of this paper is the
presentation of a logical model to represent
knowledge and time in an asynchronous dis-
tributed system where agents communicate by
message-passing. The model is capable of
representing relations between knowledge in a
group of agents and relations between knowl-
edge and time in the event-based model for
asynchronous systems of [2].

The paper is organized as follows. Section 2
presents a model for asynchronous distributed
systems. In section 3, we define our language
and in section 4 its formal semantics. Section 5
presents an application and section 6 contains
concluding remarks and future work.



2 System Model

This section introduces all the concepts
needed about Asynchronous Distributed Sys-
tems (ADS). A Distributed System is a sys-
tem composed of a set of agents that do not
share any memory and can communicate only
by sending and receiving messages along a pre-
viously defined network. For an asynchronous
distributed system, there is no global clock and
the delivery time of messages is finite but un-
bounded. We will introduce an event-based
formalism to describe the distributed compu-
tations that take place in ADS, according to
the model described in [2].

Consider a simple model for an asyn-
chronous distributed system: a network with
m agents, connected by FIFO channels; a set
R of asynchronous runs (distributed computa-
tions or parallel run of all agents involved); a
set E of events (agent i sends/receives a mes-
sage); a set C of cuts (or global states) of the
system and a protocol P (or distributed al-
gorithm) that specifies the actions each agent
takes in response to receiving a message. A
“send message” event generated by an agent
implies a “receive message” event at the target
agent. A run can be thought as a set of events
H. 3; is the state sequence that an agent n;
goes through as = evolves. We will define tem-
poral relations on the set of events as follows:

Temporal relation <: consider two events
v1 and vg, v1 < v9 if and only if:

e Both vy and vy occurs at the same node,
respectively at instants ¢; and Z9 so that
t; < to. No event v' occurs at the same
node at an instant ¢ so that t; <t < ts.

e The events v; and vy occurs respectively
in processes n;,n; so that a message j is
sent from n; to n; in v; and received by
n; in vg.

The meaning of < is “v; happened imme-
diately before v2”, and only makes sense if vq
and vy are events on the same run.

Temporal relation <*: is the transitive
and irreflexive closure of <. <* establishes a

partial ordering over the set of events Z. Two
events v; and ve which are not ordered by <+
((v1,v2) € ExE— <T and (vg,v1) € EXE— <7
) are called concurrents.

We can use the relation <™ to define the
future and past of an event £ in relation to
run Z: Past(§) = {¢ € E|¢ <t ¢} and
Future(¢) ={¢' € 21¢& <t ¢'}.

System State: is a collection of local
states, one for each node, and an “edge state”
for each network channel.

Consistent Global State or Global
State: in order to define a consistent global
state, it’s necessary to establish a total order
< over = consistent with <™. Pairs of consecu-
tive events (&1, &) €< if for all event £ # &1, &
either £ < & or & < £. There is a system state
associated to each pair (£1,&2) of consecutive
events in < denoted by system_state(&y,&2)
with the following properties:

e for a node n;, ; is the resulting state from
the occurrence of the most recent event in
n;, for example &, which is not the case
that (§1 > €).

e for each channel (n;,n;)®;; is the set of
messages sent in connection with an event
¢ so that it is not the case that (& > &)
and received in connection with an event
¢’ so that it is not the case (¢ > &).

A system state W is global if and only if ei-
ther all agents are in their initial states and
all channels are empty, or all agents are in
their final states and all channels are empty,
or there is a total order < consistent with <*
for which there is a pair (£, £2) of events s that
U = system_state(&y,&2).

Another definition of global state, using par-
titions on the set of events can be seen in [2].
According to it, a system state U is global
if and only if it is represented by a partition
(21,E2) of = so that: Past(§) C Z; every time
that £ C 21 or Future(§) € 2, every time that
& € 2. The partitions that follow this restric-
tion are called consistent cuts (figure 1).

Future and past of a global state ¥ are de-
fined as: Past(V)=Ugcz, [{{}U Past(§)] and



Future(V) = Ugeg,[{§} U Future(§)] (¥ =
system_state(E1,Eg)).

We say that a global estate ¥; comes be-
fore another global state W5 in a computation
E if and only if: Past(V,) C Past(¥3) or
Future(¥y) C Future(Wq).

Figure 1: A precedence graph with two parti-
tions: the first is a consistent cut, whereas the
second is not

The past view of an agent n; considering the
global state s given by the partition (2, Z9) is
the set if events that occurs to process n; in the
past of {;, where ¢; is the event associated with
n;’s local state: Vp(nj,s) = {¢; € Z1]& <F
¢;}. Future view can be defined following the
same reasoning.

3 The language

We now present a modal language for multiple
agents that propose a formal approach to the
representation of knowledge and time in ADS,
the Event-based Knowledge Language (EKL).
As events are the base unit of time for ADS,
our language must be capable of dealing with
such concept. We are also interested on ex-
pressing properties about knowledge during an
ADS run. To achieve that, we use epystemic
modal operators like the ones in [1].
Operators: the operators are as following;:

e The booleans connectives as the ones in
propositional classical logic;

e The modals “K;” and “B;” follows the def-
initions for the knowledge and belief logic

([1);

e The modal “[v;]” represents the validity
after the occurrence of event v;, for 1 =
1,...,m;

e The modal “<w; >” represents the even-
tual validity after the occurrence of event
v;, for s = 1,...,m; 1. e.: in a moment af-
ter the occurrence of v;, ¢ will always be
valid;

e The modal “(v;)” represents the validity
immediately after the occurrence of event
v, for i = 1,...,m (what does not mean
that ¢ cannot became false later);

e The modal “O” represents the validity af-
ter the current estate;

e The modal “¢” represents possibility after
the global estate.

e The modal “UNTIL” represents the con-
ditional validity relation between a for-
mula and an event, this way: ¢ UNTILv;
indicates that ¢ holds until the event v;
happens.

4 Semantics

In order to give a Kripke interpretation to
knowledge and events modalities it is neces-
sary to establish an appropriate set of possible
worlds and relations among them. To express
the knowledge notion we use the “possibility
relation” over global states as defined in [1].
To express knowledge over time we establish
partial temporal relations over global states.
An ADS can be considered as a Frame for a
Kripke structure, where the possible words are
the consistent cuts or global states, the ba-
sic facts are the primitives and the relations
among global states are described as follows:
Possibility relation based on the past
view (~;): Defined over the consistent cuts,
using the concept of “indistinguishable states”.
Two global estates or consistent cuts s and
s’ are indistinguishable in relation to agent
ni(s ~; §') if n; has the same past view in



Figure 2: The global states E; and E» deter-
mined by the cuts ¢; and ¢y differs by the oc-
currence of event v to agent as. As a; and a9
can’t note that event: E, ~; Ey and E| ~9 Ey

s and s’. The possibility relation is reflexive,
transitive and symmetric.

Event accessibility relation (R!): We
say that a global state s is accessible from other
global state ¢ by event v if the occurrence of v
on state s transforms the global state from s
to t. The relation R will be defined as follows:
“two global states are related by the event ac-
cessibility relation R!) if and only if they differ
only by the occurrence of one event to agent
i”. R! is a temporal relation, because ordering
global states according to the occurrence of an
event corresponds to establish which state pre-
cedes other in a computation. This ordering
will always be partial, given the properties of
the asynchronous model. To formalize R! defi-
nition the first definition of global state will be
used:

Two global states s e s’ relates by R in
relation to an event v; (noticed by agent n;) if
and only if there is a total order < consistent
with <* so that:

e s is a initial state and Past(v;) is empty
(v; is the first event that occurred to n;)
and s’ = system_state(v;,v2) (to some
event v according to <);

e s’ is a final state and Future(v;) is empty
(v; is the last event that occurred to n;)
and s = system_state(vy,v;) (to some
event v; according to <);

e s = system_state(vy,v;) and § =

system_state(v;, vy) according to the same

total ordering. wvq,v’,vy are consecutive
events in such order <.

According to this definition, all agents nj; #
n; stay at the same local state in s’ that they
were in s. The state of the edges that do not
come from n;(®y; where k # i) also stay the
same. The state of the edges ®;; that can be
modified in s’ as a consequence of the message
occasioned by event v;. In figure 2 agent as
notes the occurrence of v. The global states
FEq and Es determined by cuts ¢; and ¢o differs
by the occurrence of v to as, so: EleEg. Two
states s and ¢ are related by relation RY, sR!t,
if ¢ succeeds s at the run. Relation RY is ir-
reflexive and anti-symmetric.

It is interesting to note the ”complemen-
tary” character of the relations ~; and R:.
While ~; relates global states where the local
state of agent n; is the same, R! relates states
where the local states of agent ¢ are different.
This implies that states related by ~; do not
relate by R!, what can be noticed in figure 2 .
Let s and s’ be two consistent global states.
The following formulas holds for every i,j |
j#ir s~ s = a(sRs') , sRls' — =(sRls'),
sRis' — s~ 5.

Local temporal event based relation
Ri: For each agent i, we can define a re-
lation R’ based on relation R! and ~; as:
Rl = [~; oU(R!)o ~;]T. Intuitively, R repre-
sents the transitive closure of the composition
of RY and ~; for every event. The relation R,
provides a temporal order over global states
from an agent’s point of view.

Figure 3: Precedence Graph to initial events of
two distinct runs of the Propagation Informa-
tion with Feedback algorithm (PIF). The ini-
tial global state ¢y is not represented



Bellow, we show relations ~;, Rf, and Rﬂ_ for
two partial runs shown in figure 3:

Run rq, Agent ay:

~1= | {(co,c0), (c1,c1), (c2,2), (€3, c3), (ca, ca),
(c1,¢2), (e1,¢3), (c1,c4), (e2,c1), (c2, c3),
02,04), (03,01), (03,02), (03,04), (C4,Cl),
(04)02)) (04703)}

co,c1)}

{(
R}i- = {(CO;Cl)>(00702)7(00703)7(00)04)}

Run 71, Agent as:

~2= {(CO>CO)> (Cla 01), (027 02)7 (03)03)) (047 04)7
(00)01)) (Cla 00)7 (02)03)) (02)04)7 (037 02)7
(c3,¢a), (ca, ¢2), (ca, c3)}

Rz, = | {(c1,c2)}

)
R: = | {(c1,¢2), (co, 2), (c1,¢3), (c1,¢4), (co, c3),
(co,ca)}

Run 71, Agent as:

~3= {(CO>CO)> (Cla 01), (027 02)7 (03)03)) (047 04)7
(00)01)) (007 02)7 (01)00)) (01)02)7 (027 00)7
(c2,¢1)}

R, = | {(c2,c3)}

R24 = | {(cs,cq)}
Ri = {(02)03)> (007 03)7 (61, 03)7 (03)04)) (027 04)7
(CO) 04)) (Cla 04)}

&) ® G

gGQa S O,

Figure 4:  Graphs representing relations
R}HR?Ir and Ri over the global states of run
r1, respectively

For each agent i Rﬂ_ describes how its local
state evolves as events occur on time. As we
can have many possibilities to consistent cuts,
the relation reflects the various possible succes-
sors of a state. Ri is irreflexive, transitive and
anti-symmetric.

Global temporal event based relation
R,: To represent the notion of global time,
we’ll define a global temporal event based re-
lation as the union of Rf for every event v;, for
every agent 4 of the group. We’ll call it Ry,
R, =RLUR?2U...UR". (See figures 6 and 7)

@9 (e.)

Figure 5:  Graphs representing relations
R}HR%r and Ri over the global states of run
ro, respectively
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Figure 6: Precedence graph for one run of PIF
in an ADS with 3 agents

R, for PIF run in figure 6:

R, {(co,c1)} | Rez = | {(cs,¢0)}

Rflzﬁ = {(C3>C8)>(04709)7(05;06)}

R = | {(c1,c2)} | RZ5 = | {(ca,c5),(co,c6)}

REB = {(02)03)} R§4 = {(C3>C4)> (08709)}

Ry = | {(co,c1), (e1,¢2), (€2,¢3), (€3,¢4), (€3, ¢8),
(047 05)7 (04)09)) (08)09)) (057 cﬁ)a (09)06);
(06707)}

Figure 7: Graph of relation R over the global
states of run of PIF shown in figure 6

For each set of consistent cuts of a run, Ry
gives a temporal ordering of the states (and
consequently, of the events). As it’s not pos-
sible to define the exact ordering, R is not a
linear order. In figures 6 and 7, state c3 can
be succeeded by ¢4 or cg, what can be seen by
the presence of pairs (c3,c4) and (c3,cg) in Ry.
Ry is irreflexive and anti-symmetric.

We are now ready to define Frame and
Model for EKL:

Frame:

A frame F = (S,~;, R\, R, ,Ry),i = 1,...m



is a structure where:
e S is the set of states or possible worlds;

° NZ—,R%,R@,RU are binary relations in
S,i = 1,..,m(~C S x SR C S x
S,Ry, CSxS,R,CSxS9);

Model: A model M over F' = (S,~;
,Rf,,Ri,RU) is a pair M = (F,w), where 7
is an interpretation that associates truth val-
ues to the primitives on ® on each state from
S,m:® xS — {true, false}.

Satisfiability: A formula ¢ is true in
(M, s), (in a state s € S) for a model M when:

e M,s | p if and only if n(s,p) = true,
where p € ®;

e M,s |= - if and only if it’s not the case
that M, s = ¢;

e M,s = oA if and only if M, s |= ¢ and
M, s = 1b;

e M,s = K;p if and only if for all ¢t € S so
that (s,t) €~ M,t = ¢;

e M,s = By if and only if there exists ¢ so
that t € S e (s,t) €~;, and M, t = ¢;

e M,s | [viJe if and only if for
all states that succeed the happening
of wv; holds ¢, or: for all pair of
states s’,s"” so that s'Ris” where s’ €
Future(s), M, s" | ¢, and for all state
s" so that s" R’ s, M, s" = .

e M,s E=<w;> ¢ if and only if there exists
some state that succeeds the happening
of v; from which ¢ always hold, that is,
exists a pair of states s',s” so that s'R!s"
where s’ € Future(s) and: M, s"” | ¢ and
for all " where s"R% s" holds M,s" |
@, or exists a state s so that s"R’s"
and M,s" | ¢, and for all s" so that
S”IR@S"",M, s = .

e M,s = (v;)p if and only if there exists s’
so that sR!s" and M, s" = ¢.

e M,s = Oy if and only if for all s’ so that
sRys" and M,s" = ¢.

e M,s = Oy if and only if there exists s’ so
that sRys' and M,s' = ¢.

e M,s = oUNTILuv; if and only if for
all states that succeed s and precedes the
happening of v;, ¢ holds: for all pair of
states s',s"” so that s'Ris” where s’ €
Future(s), for all state s so that s €
Future(s) and s € Past(s'), M, s" = ¢.

Valid formulas

We now present some valid formulas and in-
ference rules on the logic defined.

Formulas 1 to 3 says that any of the ne-
cessity modal operators of the logic can be
distributed over implication, formulas 4 to 6
presents the dual modalities, formulas 7 to 9
represents the hierarchy over the modal oper-
ators that deal with time, formulas 10 and 11
shows how knowledge can be spread over time
for each one of the temporal operators and 12
to 14 shows inference rules.

L. Ki(p = ) = Kip — Ko for i =
1,...,m.

2. wille — ¥) — [vile — [vily for i =
1,...,m.

3. O(p =) > Op — Oy for i = 1,...,m.
4. Bip < - K;—p.

5. <v;> @ ¢ v,

6. op < ~O-p.

7. Op — (v;)e for some event v; for i =
1,...,m.

8. (v)p —< v; > @ for some event v; for
1=1,...,m.

9. <v; > ¢ — (vj)p for some event v; for
ii=1,..m.

10. K;[vile — [vi]Kip for i =1,...,m.
11. K;(vi)e = (v)Kjp for i =1,...,m.

12. Modus Ponens: From j and ¢ — 9 derive
.



13. Generalization of O (always on future):
From [= ¢ derive Op.

14. Generalization of [v;]: From |= ¢ derive
[vile.

5 Example Application

In order to illustrate the applicability of our
logic, we present the Propagation Information
with Feedback algorithm (PIF) for a three
agents system. The precedence graph for a run
of PIF is shown in figure 5.

Following the run r; in figure 5, we have
that after agent a1 sends message ¢ to as
and a3 (what he does on event e;) he knows
that as and az will know ¢ in the future:
Ki(<e; > (Kap A Ksp)). Considering agents
as and ag only begin their computations after
receiving the initial message from a;, after the
occurrence of e; there will be state change only
when a9 or ag receives that message from a;.
So, after the occurrence of the next event, one
among ay or az will know ¢. After the occur-
rence of e; holds: O(KspV K3p), oKop, ©K3p.

On receiving the message from ay, as learns
that a1 knows ¢, and a3 goes through the same:
[e2] Ko Ky, [e3] K3Kap. And to agents as and
a3 after e; and es respectively: [e5]K2K3¢,
[64]K3K1(,0.

After eo, agent as forwards the message to
a3, and so becomes conscious that ag will know
@ in the future. The same happens when ag
forwards the message to aq after eg: Ko(<eg>
Ksp), K3(< e3 > Kjp). Analogously, well
have: [66]K1K3(p, [67]K1K2(p, [66]K1K3K1(p,
[67]K1K2K1(,0.

6 Conclusions

The main contribution of the paper is the
presentation of a logic capable of reasoning
about knowledge and time in asynchronous dis-
tributed systems. The handling of time is
done using an event-based formalism in such
way that the language can model the evolu-
tion of knowledge in completely asynchronous

distributed systems. New event-based tempo-
ral operators were defined, providing a greater
temporal expressivity to the language, even
considering time under the partial ordering of
events imposed by the ADS model in [2]. Us-
ing a Kripke structure to support knowledge
turns the Event-based Knowledge Logics com-
patible with all kinds of knowledge operators
based on the possible worlds concept defined
to asynchronous models. As future works, we
would like to present an axiomatic system to
the language, implement a model check and a
theorem prover. Another direction is to de-
fine operators to represent group knowledge,
specially an operator for common knowledge
like the concurrent common knowledge opera-
tor shown in [4].
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