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Abstract. In a very broad sense we can state that abduction is the inference process that goes from
observations to explanations within a more general context or theoretical framework. There are good
characterizations of abduction of surprising observations in monotonic theories. Also, in normal logic
programs there are a tight relation among SLDNF and the abduction of negative literals. However, a
problem that faces abduction is the explanation of anomalous observations, i. e., observations that are
contradictory with the current theory. For this reason, in this work we will consider the problem of
characterizing abduction in nonmonotonic theories. Our inference system is based on a natural deduction
presentation of the implicational segment of a relevant logic, much similar to the R— system of
Anderson and Belnap. Then we will discuss some issues arising the pragmatic acceptance of abductive
inferences in nonmonotonic theories. Finally, we show how our system can accommodate anomalous
observations and characterize all the possible outcomes that a nonmonotonic theory may face when

confronted with new evidence.
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1 Introduction

Abduction plays a central role in many applications,
such as diagnosis, expert systems, and causal reason-
ing [11, 20]. In a very broad sense we can state that
abduction is the inference process that goes from obser-
vations to explanations within a more general context
or theoretical framework. That is to say, abductive
inference looks for sentences (named explanations),
which, added to the theory, enable deductions for the
observations. Most of the times there are several such
explanations for a given observation. For this reason,
in a narrower sense, abduction is regarded as an infer-
ence to the best explanation. There are good charac-
terizations of abduction of surprising observations in
monotonic theories [11, 12]. In normal logic programs
there is a tight relationship between SLDNF and the
abduction of negative literals [10]. This relation can
be generalized to the SLDNF inference of evidence sets
[1, 6]. However, a problem that faces abduction is the
explanation of anomalous observations, i. e., observa-
tions that are contradictory with the current theory. It
is perhaps impossible to perform such inferences in
monotonic theories. For this reason, in this work we
will consider the problem of characterizing abduction
in nonmonotonic theories.

In this work we will consider reasoning as the
process of theory construction, and we will try to char-
acterize the kind of reasoning that arises when surpris-
ing or anomalous observations are suddenly available.

Given a theory 7 and an observed evidence e, then e is
surprising if neither 7 F e, nor 7 F —e, and e is anom-
alous if 7 F —e. The first situation has received con-
siderable interest since Peirce, who coined the word ab-
duction, and characterized it as the third member of the
triad of syllogistic reasoning (together with deduction
and induction)'. The second situation (abduction of
anomalous observations) has received only occasional
attention. It is a well established fact that monotonic
theories cannot accommodate anomalous observations.
For this reason, research in this direction must focus
in abduction in nonmonotonic theories. For exam-
ple, Boutillier and Becher [3] propose a belief revision
approach based in the notion of proximity in modal
frameworks. In this approach, abduction of an anom-
alous observation is the process of finding the least
abnormal possible world given the actual world and
the new observation.

Poole [17, 18] proposes a logical framework with
interests and ingredients very similar to ours, but he
regards theories in which contradiction arises, as erro-
neous or at least incomplete. In Poole, a theory with
multiple extensions (incompatible conclusions or ob-
servations) can arise only if there is missing an ex-
plicit exception for at least a defeasible rule, or any
other kind of blocking defeater. This is however inad-
equate in most contexts, where an @ priori enumeration

I This shortest account of Peirce is surely unfair, since his purpose
was much wider, for in his semiotic analysis of inference, abduction
was central as the source of creativity and new knowledge [7].



of all the possible exceptions to the rules is impossi-
ble. Another way to reinstate consistency can arise
from an explicit ranking among default rules and plau-
sibility among evidence items [5]). This also can be
very hard to achieve in real-life situations, for instance
in scientific reasoning, where there can be abundance
of conflicting evidence, alternative theories, inconsis-
tent explicative hypotheses, and many other, without a
clear relation of epistemic importance among all these
pieces of knowledge. For this reason, in this work we
will face the crude fact that abduction in nonmonotonic
theories may have to accommodate anomalous obser-
vations.

2 A System for Abductive Non-
monotonic Reasoning

Before discussing the worries of abduction in non-
monotonic theories, first we will give a formal
characterization of a nonmonotonic reasoning sys-
tem, and then include an explicit rule for abduc-
tion. In a nutshell, the system regards defeasible rules
a(X) >— b(X)? as material implications only for the
modus ponens inference rule (that is, contraposition,
left strengthening, right weakening, and similar uses
are explicitly left out). Defeasible rules can be “fired”
in MP only when their antecedent is fully instantiated,
i. e, there is a ground substitution for X such that all
the literals in a(X) have been inferred. This ground
instance of a(X) is an activator for the rule. That is,
neither generic nor universally quantified inferences are
allowed with defeasible rules.

The reasoning system, then, will chain inferences
in a way very similar to (classical) deductions, with
the addition of inferences in which a fully activated
defeasible rule was used. This chains of inferences
are (sub)-theories in Brewka [4] and Poole [19], and
arguments in Loui [13] and Vreeswijk [23]. We will
adopt this later denomination. If a defeasible rule can
be regarded as a prima facie material implication, then
an argument for A is a prima facie proof or a prediction
for A. We can then extend the (classical) consequence
operator - to the new operator j , where 7 A means
that there is an argument for A in theory 7.

Since we may reasonably expect that these infer-
ences will eventually generate a pair of contradictory
literals, and since we want to avoid (classical) trivi-
alization, then our reasoning system must incorporate
some kind of strengthening or restriction among the
structural rules. For this reasoning, we adapted a pre-

2Both antecedent and consequent of defeasible rules are restricted
to be sets of literals (interpreted as a conjunction), and X is a tuple
of free variables.

sentation of the implicational segment of a relevant
logic, similar to the R—s system of Anderson and Bel-
nap [2]. Then, the reiteration rule is restricted to sen-
tences that were inferred within the same subproof. If
we need reiteration of a sentence S of a previous step
outside the subproof, then we must either introduce S
as a new assumption, or reproduce the inference steps
that leads to the inference of S. To take due care of
this, we establish an index schema that labels premise
introduction and its ulterior discharge by means of — ;.
The use of a defeasible rule is regarded as a restricted
modus ponens that also introduces a new hypothesis.
The labeling schema obeys a simple set of cases (the
subindices I and J denote sets of indices, and ¢ and j
denote individual indices).

e (Premise) An hypothetical premise a is introduced
with an index ¢ never used before (we will use the
sequence of natural numbers).

e (—;) From a (sub-)demonstration for b; from
premise a; (with j € I) to infer (a— b)7_(;3.

e (Reit.) Reiteration of a sentence retains the in-
dices.

o (—g) In the modus ponens rule, the consequent
retains the indices of the major and the minor
premises: from a; and (a— b); to infer by ;.

We now add the case for defeasible rules.

e (>—p) From a (sub-) demonstration of a(¢); and
a(X) >— b(X) to infer a(t)— b(t) gk}, Where
k is an index never used before.?.

Example 2.1 Suppose that in our knowledge base
we have
a,a >—b,b >—c,a >— —c

In this situation, we may establish the following
reasoning lines:

1 a1y Premise

2 (@ >— D)2y Defeasible rule
3 b{lwg} 1,2, >—F

4 (b>—c)qsy Defeasible rule
5 €{1,2,3} 3,4,>F

1 a1y Premise

2 (a >— —c)1ay Defeasible rule
3 “0{1’4} 1,2,>—E

3Both a(X) and a(t) denote sets of literals. X is a tuple of free
variables, t is a tuple of ground terms such that X may be substituted
for ¢ in a(X).



w(X)>—i(X) If X has work, then X receives
an income.*

If X has work, then X pays taxes.

We may also use an “intuitionistic” negation introduc-

tion rule —y [21], according to which if the introduc-

tion of an hypothesis leads to contradiction, then the — w(X)>—t(X)
(X)

negation of the hypothesis can be inferred. w(X)>—=s(X) If X has work, then X does not study.
s(X)>—w(X)  If X studies, then X has work.
1 [ amy Premise e(X)>—s(X) If X has a scholarship, then X studies.
2 (@ >—b) (9 Defeasible rule (X)>—i(X) If X has a scholarship, then X
3 b{1,2} 1,2,>g receives an income.
4 (b >— ¢)(3) Defeasible rule o(X)>——t(X) If X has a scholarship, then X
5 C{1,2,3} 3,4,>pg does not pay taxes.
6 (@ >—=c)y Defeasible rule Given this, what can we expect about Scott, of
7 B 1,6,>—x whom we only know that he pays taxes?
8  ag23.4} 57,71

The first two demonstrations are subsumed in the
third, but we show them separately to stress the fact
that the logic is showing three possible conclusions,
each one founded in three different sets of premises. If
we were able to establish comparisons of the assertive
support (i. e., the trustability) of these sets of premises,
then we may choose among these conclusions. It is
remarkable that b is always consequence of the theory,
because it is not contradictory with any other sentence
(the logic will not try to reason by contraposition with
—c and b >— ¢).

Our final step is to propose a rule for abduction.
This rule is based on several considerations (which
cannot be discussed at length here because of space
limitations). For this reason, we will give here only
a short motivation. Given a nonmonotonic theory T
(i. e., a theory that may have defeasible rules), an ab-
duction for an observation O should be a hypothetical
explanation H that is compatible with 7T, neither T
nor H should jointly (but not separately) explain O,
and any other explanation H' should also explain H
itself. Formally:

® (4bd.) From Oy to infer Hgyyy iff

1. Hguuy UT WL, (H is consistent with T)
2. TV Ok, (there is no argument for O in T)

3. Hsugryl* Ok, (there is no argument for O
in H)

4. T U Hgyugryb Ok, (there an argument for
O in TUH)

5. Any other set H' that satisfies the four con-
ditions above is such that H' UT v Hgyry
(i. e., H is the most “shallow” explanation
for O).

Example 2.2 Suppose that in a knowledge-based
system we find the rules

1 [ t(Scott) 1y Premise

2 | (w(X)>—t(X)) {2 Defeasible rule

3 w(Scott) (1,93 1,2, Abduction
(Explanation)

4 [ w(Scott) (1,93 3, Reit.

5 | (w(X)>—i(X)) (3} Defeasible rule

6 i(SCOtt){LQ’g} 4,5, — g
(Prediction)

7 [ w(Scott) 1,93 3, Reit.

8 | (w(X)>==5(X)) (43 Defeasible rule

9 “S(SCOtt){LQA} 7, 8, — E
(Prediction)

By abduction, we can show that t(Scott) because
w(Scott) (he pays taxes because he works), and from
this inference, we can predict that he has an income,
and that he does not study. It is a desirable feature
here that further (iterated) abductions (for example,
c(Scott) because i(Scott)) are blocked for being in-
consistent (see the next Section).

If we knew about another person, say Kim, of
whom we knew only that she received an income, then
we could generate two abductive explanations for her
income. The first one, i(Kim) because w(Kim), al-
lows further predictions (¢(Kim) and —s(Kim)). The
second one, i(Kim) because c(Kim), allows other
predictions (s(Kim) and —t(Kim)). In this situation
we have two unrelated explanations, of which we can
not choose one over the other (again, see next Section).
However, knowing further that, for instance, s(Kim),
will block the first explanation in favor of the second.

3 Some Issues Regarding Abduc-
tive Explanation

In this Section we will pose some characteristics that
distinguish abductive reasoning in nonmonotonic theo-

4The rules in this example are defeasible, so they should be read
as “Normally if X has a work...” and so on.



ries from other kinds of nonmonotonic reasoning. Re-
garding our last example, find reasonable that a the-
ory will generate different incompatible explanations,
establish new predictions from previous explanations,
and even block some of these new predictions given
the facts. The first of these problems regards the prob-
lem of multiple extensions [4]. These had been con-
sidered an undesirable feature of nonmonotonic the-
ories For this reason, there is a growing interest on
finding adequate comparison criteria among extensions
[13, 19, 23]. When there are two or more unrelated
defeasible arguments with contradictory conclusions,
then it is hard to accept or believe any of the conclu-
sions.

However, in defeasible abductive reasoning, it is
natural (and indeed desirable) to have multiple expla-
nations. This may arise when more than one activator
can generate a defeasible argument whose conclusion
is the surprising observation. Each of these activators
gives rise to a new and different extension of the con-
text of the theory.

Example 3.1 (4 slight modification of Nixon’s
diamond [9]).  Suppose we have the following
nonmonotonic theory T :

{a(X) >—p(X)
7(X) >— —p(X)
h(X) >— —p(X) }

(Quakers are pacifists),
(Republicans are not pacifists),
(Hawks are not pacifists).

e [f we have evidence E = {q(Dick),r(Dick)},
then we can generate two defeasible arguments
that respectively justify, p(Dick) and —p(Dick).
However, none of these conclusions is compatible
with the context T U E, and for this reason no
tenable extension can be generated.

e However if we have evidence E = {—p(Dick)},
then there exist two defeasible abductive explana-
tions r(Dick) and h(Dick). Each of them sep-
arately, their conjunction, and also their disjunc-
tion, raise an extension that is consistent with the
context.

Another remarkable difference arises among the
strength of nonmonotonic explanations and non-
monotonic predictions. We may claim that —quite on
the contrary of what occurs with strict implications
and monotonic theories— in nonmonotonic theories, an
abductive explanation is in general stronger than a pre-
diction (implication).

Example 3.2 Suppose we use a defeasible rule to
represent the odds of winning the lottery when a ticket
is bought.

T = {buys(X) >— wins(X)}.

o [f we have evidence that Jack bought a ticket
E = {buys(Jack)}, then we defeasible conclude
(predict) that he will win the lottery wins(Jack)

e [n turn, if we have evidence that Jack won
the lottery E = {wins(Jack)}, then our ab-
ductive explanation is that he bought a ticket
buys(Jack).

Which of the reasoning lines seems stronger?

There is also the issue of the accrual of reasons,
i. e., the idea that two or more arguments supporting
the same conclusion give more strength to the con-
clusion in case there are also arguments against the
conclusion. In nonmonotonic reasoning, this heuristic
was proposed by Pollock [15, 16] and Verheij [22],
but lately they abandoned this idea, and now nobody
believes that accrual of reasons is an adequate compari-
son mechanism. In nonmonotonic abductive reasoning,
we can certainly have an accrual of explanations, i. e.,
the case where an abductive explanation for a surpris-
ing fact f, is also an explanation for new observed but
previously unpredicted facts.

Example 3.3 Suppose we have the following non-
monotonic theory.

T={ a(X)>—-bX),
a(X) >— ¢(X),
a(X) >— d(X),
e(X) >—d(X)}.

If we are now confronted with the observation d(t),
then there exist two possible abductive explanations
a(t) and e(t). a(t) activates also the new predictions
=b(t) and c(t). For this reason, in general a(t) will
be preferable because of its larger empirical progress.

In the context of scientific explanation, this
progress is regarded by many as the supreme virtue
of a scientific theory, notwithstanding refutation. If
we had evidence b(t), c(t) and d(t), the only consis-
tent explanation is e(t), but a(t) will continue to be
preferred because it explains more observable facts, in
spite of the fact that it has a counterexample.

4 Combining Defeaters

A final issue we wish to discuss is the defeat among
various arguments in a nonmonotonic theory. This sit-
uation arises if we admit the possibility of iterating
abductive explanations. In Sec. 2, we introduced a
“shallow” abductive operator, but it can be iterated to
produce “deeper” explanations.



Example 4.1 (Afier [11] and [14]). Suppose we
have the following theory T.

{ 7(T) >— wr(T), (if it rains, the road is wet),

r(T) >— wl(T), (if it rains, the lawn is wet),
r(T) >— —s(T), (if it rains, it’s not sunny),
s(T) >— —r(T), (if it’s sunny, it does not rain),

so(T) >— wl( ), (if the sprinklers are on,
the lawn is wet),

s(T) A W(T) >— so(T), (if it’s sunny and hot,
the sprinklers are on),

wl(T) >— ws(T), (if the lawn is wet,
the shoes are wet),

wr(T) >— ws(T) }. (if the road is wet,
the shoes are wet).

In this situation, suppose we observe that our shoes
are wet (E = ws(today)). The possible (shallow)
explanations for this are that either the road is wet, or
that the lawn is wet, or both. However, none of these
suffices to generate a “most specific” explanation.

To generate a more specific explanation we can it-
erate the abductive inference, that is, to generate a new
“evidence” set E’ that contains F plus any of the in-
dependently generated explanations, and then use this
new context to try to generate a new abductive expla-
nation. This procedure may be easy to formalize, but,
as we will see, it may be that an argument is con-
flicting with some of these abductive hypotheses, and
a criterion for combining defeat should be taken into
account.

Example 4.2 (After [8], with slight modifications).
Let us consider the following theory T.

{ ¢(X) >— p(X), (Quakers are pacifists),
q(X) >—rel(X), (Quakers are religious),
r(X) >— b(X), (Republicans are belicists),
p(X) >— —b(X), (pacifists are not belicists),
b(X) >— —p(X), (belicists are not pacifists),
b(X) >— sw(X ), (belicists support star wars),
b(X) >— pm(X), (belicists are politically motivated),

p(X) >—pm(X) }. (pacifists are politically motivated).

Suppose that our starting point is the observa-
tion that Dick is politically motivated (pm(Dick)),
and that we believe that an explanation for this is
Dick being a Quaker (q(Dick)).

However, new information leads us to accept
that Dick supports star wars (sw(Dick)). This is
not an anomalous observation (—sw(Dick) was not
conclusion of our belief state), but any attempt to
find an abductive explanation for the new observa-
tion will force us to change beliefs. In particular,
the only possible explanation is (b(Dick)), which
generates a conflict with our previous beliefs. In

this state of affairs, we have two competing arguments.

Alz{

q(Dick) (previous assumption),
q(Dick) >— rel(Dick) (prediction to be confirmed),
q(Dick) >— p(Dick) (prediction to be confirmed),
p(Dick) >— —b(Dick) (prediction to be confirmed),
p(Dick) >— pm(Dick) } (confirmed prediction).
AQZ{

sw(Dick) (new observation),
b(Dick) >— sw(Dick) (abductive explanation),
b(Dick) >— —p(Dick) (prediction to be confirmed),

b(Dick) >— pm(Dick) } (confirmed prediction).

The possible conclusions to which we could arrive
in this competition between A1 and Ay can be grouped
in three cases.

1. We keep accepting q(Dick) but we reject the ab-
ductive explanation b(Dick) because it is contra-
dictory with other knowledge, and it is the con-
sequence of a weak inference pattern. Then, the
explanation for sw(Dick) must come from an-
other rule, still unknown.

II. Quite on the contrary, we accept b(Dick) and
reject q(Dick) because it was in fact an assump-
tion (this would not be the case if q(Dick) was
an observation in the context).

III. We accept the abductive explanation b(Dick)
and continue to believe that q(Dick), but
we reject that the later is a reason to re-
ject the former (i. e., we reject the argument

{q(Dick) >— p(Dick), p(Dick) >— —b(Dick)},

thus establishing the conjecture that some kind

of exception must be the case here (Dick is a

kind of belicist Quaker).

Suppose now that our previous assumption that
explains pm(Dick), was r(Dick), and that the new
observation is rel(Dick). This observation is not
anomalous (because —rel(Dick) is not conclusion of
this belief state). However, any abductive explanation
will again force us to change belief, in particular we
can only explain rel(Dick) with (q(Dick)), which
conflicts with our previous beliefs. We have then two
competing arguments.

Az={

r(Dick) (assumption),
r(Dick) >— b(Dick) (prediction to be confirmed),
b(Dick) >— dm(Dick) (prediction to be confirmed),
b(Dick) >— —p(Dick) (prediction to be confirmed),
b(Dick) >— pm(Dick) } (confirmed prediction).



As={

rel(Dick)

q(Dick) >— rel(Dick)
q(Dick) >— p(Dick)
p(Dick) >— —b(Dick)
p(Dick) >— pm(Dick) }

In this competence between arguments we can ar-
rive at the following group of conclusions.’

1. We keep accepting r(Dick) but we reject the ab-
ductive explanation q(Dick) because it is contra-
dictory with other knowledge, and it is the con-
sequence of a weak inference pattern. Then, the
explanation for rel(Dick) must come from an-
other rule, still unknown.

II. Quite on the contrary, we accept q(Dick) and
reject r(Dick) because it was in fact an assump-
tion.

III. We accept the abductive explanation b(Dick) and
continue to believe that r(Dick), but we reject
that the later is a reason to reject the former
or vice versa (i. e., we reject both the argument
{q(Dick) >— p(Dick),p(Dick) >— —b(Dick)}
—Dick is a kind of beli-
cist Quaker— and the argument
{r(Dick) >— b(Dick), b(Dick) >— —p(Dick)}
—Dick is a kind of pacifist Republican).

We can summarize the possible strategies to solve
the conflicts between abductive inference and argu-
ments.

I. We include only the abductive inferences that do
not generate conflicting arguments with previous
beliefs.

II. We consider that abductive inferences are de-
featers for arguments that supported previous be-
liefs.

III. Conclusions of arguments and abductive expla-
nations are on an equal footing, and if there are
contradictions, then they must be attributed to an
exception in one or more defeasible rules.

Definition 4.1 Given a context T U E with an un-
derlying knowledge K. Then

1. The set of argumentative supported conclusions
A, are generated from EUT.

2. The set of abductive explanations B, are gener-
ated from EUT.

3. If there is a pair of contradictory literals a € A,
and b € B, then either

(observation),

(abductive explanation),
(prediction to be confirmed),
(prediction to be confirmed),
(confirmed prediction).

(1) Any argument A for a defeats any argument
generated with b.

(II) Any argument generated with b defeats any
argument generated with a.

(Ill) Any of the defeasible rules used in the ar-
guments for a or in the explanations for b
is defeated (syntactically blocked).

4. Firm conclusions C are the members of A. and
B, that were not defeated in 3.

If we need to iterate abduction, then the firm con-
clusions C' are added to the “evidence” E, and the
process is repeated.

Example 4.3 Suppose we are in the situation of Ex-
ample 4.1, and we observe that our shoes are wet
(ws(today)), and we remember that today it was sunny
(s(today)). Then, what can we conclude? The most
general abductive explanations are wr(today) and
wl(today). At the moment, any of these explanations
is compatible with the observations and there is no de-

feat. If we iterate the abductive process, we find that

r(today) is explanation for wr(today), and r(today)
or so(today) are explanations for wl(today).

Following strategy I, we assimilate so(today) as
the only tenable explanation for ws(today), that is,
we conjecture that the sprinkler was on, it got the
lawn wet, and then our shoes got wet. If we push
this further, we can also conjecture that today it was
hot in addition to being sunny. Instead, if we follow
strategy II, then the explanation r(today) blocks our
remembrance of being sunny. Then, our explanation
now is that it rained, the rain got the road and the
lawn wet, and then our shoes got also wet. If we use
strategy IlI, then both previous explanations are valid
and compatible, and we reject the rules that mutually
exclude r(today) and s(today), that is, we suppose
that today it may be hot and sunny at one time, and
rainy at another.

5 Conclusion

We presented a treatment of abduction in non-
monotonic theories. This inference context is the only
way to cope with the problem of anomalous obser-
vations without changing the underlying theory. Our
inference system is based on a natural deduction pre-
sentation of the implicational segment of a relevant
logic, similar to the R— system of Anderson and
Belnap. We will discussed some issues arising from
the pragmatic acceptance of abductive inferences in
nonmonotonic theories, in particular, the existence of
multiple explanations, the strenght of explanations (wrt



predictions) and the accrual of explanations. Finally,
we discussed the problem of the combination of defeat
among arguments and abductions, showing how a non-
monotonic theory evolves when confronted with new
evidence. A remarkable similarity can be found among
the formalization of scientific research programmes and
our system. We can easily regard a scientific theory as
a special case of nonmonotonic theory, where the acci-
dental generalizations and other lawlike statements are
the default rules, and the conjectures are abductions
that “protect” the theory from refutation. For this rea-
son, we are working with the reconstruction of current
scientific theories and their drive when confronted with
new evidence.
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