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Abstract.  In this position paper, some
differences between inductive reasoning and
abduction are investigated.  From an
epistemological point of view, abductive reasoning
is related to the non-deductive inference of
explanations (which are often required to be basic
facts) that, together with some background theory,
allow a specific observation to be deduced or
nonmonotonically inferred.  In the Artificial
Intelligence domain, an important family of
inductive reasonings consists in inferring rules that
generalize a series of examples.  In this paper, the
focus is on a distinction between induction and
abduction that is traced back to the various
possible natures of generalization.  More precisely,
it is shown that generalization from examples is
sometimes performed just using deduction,
although the resulting process is correctly
interpreted as inductive reasoning.  On the
contrary, most authors would not classify
corresponding forms of deductive explanation as
abductive ones.

1. Introduction
From an epistemological point of view,
inductive reasoning as it is often defined in
the Artificial Intelligence field and
abduction are clearly two different
processes.  It is often claimed that both are
non-truth-preserving forms of inference
that differ in their respective goals.  On the
one hand, abduction is used to infer an
explanation for some specific observed
situation.  The inference should be non-
deductive; with the help of some
background theory, the explanation, which
often takes the form of basic facts, allows
the specific situation to be deduced or
nonmonotonically inferred.  On the other
hand, inductive reasoning in the Artificial
Intelligence field is often related to the
process of generalizing from examples.
Accordingly, two basic differences at the

ontological level are generally
acknowledged between both forms of
reasoning.  When inductive reasoning
(resp. abduction) is under consideration,
rules (resp. facts) are thus inferred that
explain a series of examples (resp. a
specific situation).  In this paper, the focus
is on a distinction between both forms of
reasoning that is traced back to the various
possible natures of generalization.  More
precisely, one such specific nature together
with properties linking deduction and
induction are used to show that
generalization from examples is sometimes
performed using just deduction, although
the resulting process is correctly
interpreted as inductive reasoning.  On the
contrary, most authors would not classify
the logically corresponding forms of
deductive explanation as abductive ones.

Accordingly, we shall focus on the
different possible natures of generalization
from examples, taking the formal relations
between logical induction an deduction
into account.  In this respect, we take
position in what appears to be an unsettled
debate in the AI community, where several
interpretations of the nature of
generalization seem to conflict one with
the other.  We hope that our contribution
should help in bringing some additional
light in this debate, which has seen a recent
regain of interest (see e.g. [14]). Our
contribution can be summarized as
follows.  First, we differentiate between
three seemingly different approaches to
generalization from examples : the
inductive, the deductive, and the set-
theoretic ones, respectively.  Following



Flach’s contribution [7], we acknowledge
that the set-theoretic account of
generalization can be reinterpreted into
logical terms.  But we also claim that there
is not a unique correct logic-based
approach to the generalization paradigm:
on the contrary, both the seemingly
opposite deductive and inductive
approaches can be accepted.  Moreover,
we recall that deduction and induction are
not just simple opposite logical processes
underlying two definitions for
generalization, but obey properties so that,
under some precise circumstances, one
process is used to perform the other one.
Actually, we show that these properties
allow one to connect the various
approaches to generalization and to shed
light on the crossed dualities between, on
the one hand, induction and deduction,
and, on the other hand, generalization and
specialization.

2. Various approaches to
generalization from examples: an
intuitive account
Actually, many symbolic machine learning
techniques are concerned with the
inference of useful generalizations of some
basic examples or facts.  Let us describe
the standard logic-based approach.  For
examples, from the fact that Clyde the
elephant has a trunk and from a similar
observation about other elephants, we
might want to generalize and infer that all
elephants have a trunk.  From a logical
point of view, such generalizations are
induced form the given examples or facts.
Since induction and deduction are converse
logical operations, generalizations can  be
defined as formulas that allow one to
deduce and thus explain basic examples or
facts.  At this point, the links between
generalization, specialization, deduction
and induction might thus seem
straightforward : generalization are
assertions that are obtained using
induction; backwards, they specialize into
these examples or facts using deduction.
Accordingly, this logic-based approach to

the definition of generalization (and the
resulting generalizations themselves) will
be called inductive.  However, this issue is
more intricate and the newcomer to e.g. the
machine learning field often gets confused
by several clashing intuitions about the
logical nature of generalization.  Let us
describe these alternative intuitions and
how they conflict with the above inductive
approach.

A first apparent contradiction to the
inductive approach is that many machine
learning algorithms that are known to
perform inductive generalizations actually
compute formulas that are deductive (v.
inductive) consequences of the examples.
For example, in their simplest logical
setting, inductive machine learning
algorithms like AQ [10] or ID3 [5] can be
interpreted as yielding generalizations that,
actually, are deductive consequences of the
examples.  In the following, we show why
and to which extent inductive
generalizations can be obtained using
deduction.

Actually, several authors even
define generalizations as deductive
consequences of the examples (e.g. [4, 8,
9]).  Let us refer to this opposite logic-
based approach as the deductive one.  In
the deductive approach, ‘red’ is interpreted
as more general than ‘red and circle’ since
the former piece of information can be
deduced from the latter one.  The
underlying idea is that ‘red’ encodes less
information than ‘red and circle’ and is
thus more general since it is a less
constrained description and allows for
more ways to complete the information
that it conveys.  The inductive and
deductive approaches are clearly converse
ones that translate opposite intuitions.
From a model-theoretic point of view, a
more general formula should exhibit less
logical models according to the inductive
approach; whereas it should exhibit more
models according to the deductive
approach.  Actually, we claim that both
logic-based approaches to generalization
have opposite but sound motivations, so



that they can be both defended.  Deciding
which is the correct one cannot be
addressed without making the
epistemological (v. logical) nature of
generalization more precise.  Moreover, we
shall show that when the logical
framework is extended into a
nonmonotonic one, it becomes even harder
to relate the inference relationship of the
logic to the notion of generalization in the
general case.  Anyway, the deductive
approach to generalization is often used
implicitly within an inductive reasoning
schema.  On the contrary, most authors
would not defend that this formal schema
is a form of abduction when it is
reinterpreted as a deductive approach to
explanation.

This issue is even more intricate
because of a third intuition about
generalization that involves set-theoretic
considerations.  This last intuition concerns
open formulas that can be interpreted as
concepts, i.e. formulas containing free
variables, like French(x) denoting the set
of French people.  Intuitively, a concept
whose extension is larger should be
considered as being more general.  For
example, the set of European people is
larger than the set of French people.
Accordingly, European(x) is more general
than French(x) when these formulas are
interpreted in the real world.  Note that it
should be possible to deduce that a French
person is a European one.  Thus, at the
intuitive level, this set-theoretic approach
resembles the deductive one and conflicts
with the inductive one, notwithstanding the
fact that a formal comparison between the
approaches is not straightforward since the
set-theoretic one does not apply in a direct
manner to the propositional case.

In order to discuss this matter in
more details, we need some logical
background.

3. Logical preliminaries
In order to represent examples and facts,
domain knowledge (also called

background theory) and learned formulas,
many symbolic machine learning
techniques make use of logic-oriented
languages that can be reduced to fragments
of the language L of standard first-order
logic.  In the following, we suppose that
the set of individual constants of L is both
finite and not empty and there is no other
functions allowed in L.

The well-formed formulas
(thereafter, formulas or wffs) of L are built
as usual.  The symbols ¬ , ∧ , ∨  and ⇒
represent the negation, conjunction,
disjunction and the material implication
connector, respectively.  A set of wffs will
be identified with the conjunctive wff
whose conjuncts are the elements of the
set.  For example, given a wff F and a set A
of wffs, we can speak of the wff A ∧  F.

Interpretations, satisfiability and
models are defined in the usual way for
closed wffs of L [2].  Let us stress that this
standard semantics is often extended to
wffs containing free variables [6, 3];
however, free variables are then interpreted
as (roughly) universally quantified ones.
This differs from the intuition we have
about open  formulas like French(x), which
denotes the set of French people.
Accordingly, we shall consider closed wffs
only, except when we express the set-
theoretic concepts.  How these concepts
could be interpreted inside this logical
framework will be the object of further
comments.  As we shall restrict ourselves
to Herbrand intepretations only, the
symbol =  will actually represent the
standard first-order entailment relation
according to this Herbrand semantics (it
will thus concern closed formulas, only).
Let us also stress that wffs and sets of wffs
will be considered from a semantical point
of view; wffs (and sets of wffs) are
equivalent iff they exhibit the same
models.

4. Deduction v. Induction
Let us now address the central issue of this
paper, i.e. how can we explain that



inductive generalizations can sometimes be
obtained using deduction, whereas this
does not apply to corresponding abductive
schemas?

First, let us give a standard (purely
logical) definition of inductive
generalization.  In the following, D and F
will be two consistent wffs of L
representing the domain knowledge and
the basic examples or facts to be
generalized, respectively.  Most often, F
will be the disjunction of these examples or
facts.  It is generally required that D =   F
does not hold.

Definition 4.1
A wff G is an inductive generalization of F
w.r.t. D if and only if D ∧  G=   F

Obviously enough, deduction and
induction are not identical processes; they
coincide mainly in the trivial cases
involving reflexivity of = ; i.e. let A ∈  L :
A =  A and D ∧  A=   A.  However, a
simple way to perform induction through
deduction has hardly been exploited in the
Artificial Intelligence literature.  It is based
on the contraposition property of = , i.e.
let A, B ∈  L:  A=   B  iff ¬B =  ¬A.
Accordingly, we derive the following
alternative (purely deductive) definition of
inductive generalization that is equivalent
to Definition 4.1.

Theorem 4.1
A wff G is an inductive generalization of F
w.r.t. D  iff D ∧  ¬F=  ¬G

Accordingly, the inductive generalizations
of some given examples can be derived in
a purely deductive way from the examples
and domain knowledge.  They consist of
the negated deductive consequences of the
conjunction of the domain knowledge with
the negated examples.  Such a property has
been envisaged by [1]. (Obviously, the
main difference from deductive theorem
proving is that we are here to discover G
whereas when theorem proving  is under

consideration, we are often just required to
prove that a given G is derivable.)

Moreover, it does not answer the
question addressed here.  Indeed,
algorithms like AQ or ID3 are not based on
the use of contraposition.  Actually, the
key relationship that is often used in an
implicit manner to perform inductive
generalization using deduction is the
following one.

Let Concept be a new 0-ary
predicate and D, F and G be wffs of L.

Theorem 4.2
If  F =  G      then
                 G ⇒  Concept =   F ⇒  Concept
If D ∧   F =  G  then
   D  ∧   (G   ⇒  Concept)  =   F ⇒  Concept

This theorem is best understood as follows.
Inferring the inductive generalizations of a
wff F consists in inducing wffs G from F.
However, when the formulas are
interpreted as sufficient conditions for the
satisfaction of a concept, i.e. when F
implicitly denotes F ⇒   Concept, it can
consist in deducing G from F.

This result plays a key role in our
argumentation.  It thus explains that the
induced description of a concept (i.e. its
sufficient conditions) can sometimes be
obtained using deduction.  In their simplest
logical setting, algorithms like AQ or ID3
that compute inductive generalizations
using deduction can be interpreted in these
terms.

Let us stress that the logical rules of
Theorem 4.2 does not involve any
epistemological contents by themselves but
are just purely formal results.  In theory,
we could apply them to abduction.
However, in the context of diagnosis or
explanation searching, whenever the
explanation or diagnosis G can be deduced
form the observed situation F, most
authors would not agree that it is
abductive.  In most situations, some
authors would even be reluctant to say that
G has to take the form of facts (v. rules in
inductive generalization).  Moreover, it



seems difficult to reinterpret Theorem 4.2
in the context of explanation or diagnosis
while obeying the intuition behind these
tasks (in particular, by what should
Concept be replaced?).

5. A few additional comments
about the conflicting approaches
to generalization
Actually, Theorem 4.2 and the
transformation principle that it conveys
shed some light on the complexity of the
actual relations between the set-theoretic
and the two logical definitions of
generalization.  Indeed, in addition to the
existence of three approaches to
generalization that can be defended
because of their specific acceptable
motivations, it allows the inductive one to
be implemented thanks to deductive
techniques (thus using implementation
techniques pertaining to the deductive
approach) and allows the set-theoretic one
to be reinterpreted in terms of the inductive
one, as we shall see.  Accordingly, the
transformation principle formalized in
Theorem 4.2 has played several roles in the
literature.  First, it is used quite implicitly
by [11] and [13] to differentiate between
concepts and recognition functions, the
latter authors introducing the so-called I-
implication technique to avoid interpreting
free variables.  In defending the inductive
approach to generalization, [12] refers to
such a relation in an informal manner,
claiming that when we assert that a wff G
that can be deduced from a wff F is more
general than F, then we are probably
interpreting F and G as sufficient
conditions of a common concept.  We
disagree with Niblett in the sense that there
is some viable direct intuitions that justify
interpreting G as more general than F.
Finally, [7] used a transformation similar
to the one involved in Theorem 4.2 (i.e.,
replace the concept F(x) by ∀ x(F(x) ⇒
Concept(x))) to relate the inductive and
set-theoretic approaches to generalization,
in an attempt at showing that these two
approaches are two sides of the same coin.

Actually, it seems to us that, to
some extent, the set-theoretic approach is
more directly connected to the deductive
one.  When set-theoretic concepts are
under consideration, the nature of
generalization seems uncontroversial: the
extension of a more general concept
includes the extension of a less general
one.  For instance, the set of European
people includes the set of French people.
The set-theoretic approach resembles thus
the deductive one since we should be able
to infer that any French person is a
European one, provided that some
adequate background knowledge is
available.  Also, asserting that (the set-
theoretic concept) European(x) is more
general than (the set-theoretic concept)
French(x) can be translated in our logical
framework as ∀ x (French(x) ⇒
European(x)), which in turn allows ∀ x
French(x) =  ∀ x European(x) to be
derived.  Obviously, when we must deal
with wffs including both open subformulas
representing set-theoretic concepts and
other closed subformulas (e.g. the
background knowledge and the examples),
we cannot simply use Thayse’s semantics
[6, 3] or bind the free variables to obtain a
global closed wff that can be interpreted
under our Herbrand semantics.  Indeed, no
real distinction would be observed between
universally quantified variables and free
variables of concepts that would be bound.
We claim that this a technical default
pertaining to standard logic that should not
obscure the possible deductive
interpretation of the set-theoretic approach.
On the other hand, it is sometimes claimed
that the logical counterpart of the set-
theoretic approach is the inductive one.  To
this end, [7] translates the concept F(x)
into ∀ x (F(x) ⇒  Concept(x) ) (to some
extent, also used by [13]).  Although this
translation schema allows closed wffs and
transformed set-theoretic concepts to be
handled within the same logical
framework, it should be noted that it
translates a specific epistemological point
of view of the generalization task.  In that



respect, when the issue of defining the
universal logical nature of generalization is
under consideration, it introduces a side-
effect bias towards the inductive approach.
 Actually, we claim that deciding
which one amongst the two opposite
logical definitions of generalization is
‘correct’ is a domain (or task)-dependent
issue that requires the epistemological (v.
logical) nature of the form of
generalization that we want to model to be
made precise.  Let us elaborate a little
more to defend this view.  Let A, B ∈  L
and A =  B, which wff is more general: A
or B?  We have already illustrated in the
introduction that diverging intuitions can
guide this choice towards one of the
formula v. the other one.  We claim that
this choice does not depend on the intrinsic
nature of the =  relationship but on the
examples and task at hand, as illustrated
before.

Moreover, when the logical
framework is extended into a
nonmonotonic one, it becomes even harder
to relate the inference relationship of the
logic to the notion of generalization in the
general case.  Let  ~  be a nonmonotonic
inference relationship.  The argument
favouring the inductive approach that rests
on the idea that a more general information
should bring more information does not
hold anymore.  Indeed, in the schema D ∧
A ~ B, B is not necessarily semantically
entailed by D ∧  A.  Formula B can bring
some additional information with respect
to D ∧  A, and conversely.  Also, the link
between the set-theoretic and the deductive
approaches vanishes.  Indeed, let =   ∀ x
(B(x) ⇒  A(x)) be the logical translation of
the set-theoretic assertion: the concept A(x)
is more general than the concept B(x).  The
corresponding nonmonotonic assertion ~
∀ x (B(x) ⇒  A(x)) does not necessarily
express that the extension of B is included
(with some possible exceptions) in the
extension of A.  It can sometimes translate
the opposite idea.  To illustrate this,

replace B(x) by Mammal(x) and A(x) by
Terrestrian_mammal(x); clearly, in this
example, we want the extension of the
latter concept to be included in the
extension of the former one.
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