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Abstract A finite data set is consistent with in-
finitely many alternative theories. Scientific real-
ists recommend that we prefer the simplest one.
Anti-realists ask how a fixed simplicity bias could
track the truth when the truth might be complex.
It is no solution to impose a prior probability dis-
tribution biased toward simplicity, for such a dis-
tribution merely embodies the bias at issue without
explaining its efficacy. I propose, on the basis of
computational learning theory, that a fized simplic-
ity bias is necessary if inquiry is to converge to the
right answer efficiently, whatever the right answer
might be. Efficiency is understood in the sense of
minimizing retractions or errors prior to conver-
gence to the right answer.
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1 Introduction

There are infinitely many alternative theories
compatible with any finite amount of experi-
ence. How do we choose the right one? Sci-
entific realists justify such choices on the basis
of simplicity, unity, uniformity of nature, or
minimal causal entanglement. These appeals
to “Ockham’s razor” smack of wishful think-
ing, however, for how could a fixed bias to-
ward simple theories possibly facilitate finding
the right answer? A fized bias of any kind can
no more “track” or indicate the right answer
than a stopped clock can indicate the time.
Here is a bad explanation: impose personal
probabilities biased toward simplicity on the
problem and then argue, on the basis of this

bias, that a prior bias toward simplicity prob-
ably helps us find the truth. Whatever this
tight circle “justifies”, it does not explain how a
simplicity bias could facilitate finding the right
answer because it presupposes the very bias to
be explained.! Nor does it help to say that if
the bias is in error, it will “wash out” in light
of future data: so would a prior bias toward
complexity. The question is how a simplicity
bias could help us find the truth, not how we
could eventually recover from its ill effects.

The realist must explain how simplicity
could help us find the truth without point-
ing at or indicating the truth— but isn’t that
double-talk? Not quite. The ideal automo-
bile may not be as fast or as beautiful as we
would like, but any gain in one direction im-
plies a more than compensating loss elsewhere.
Maybe Ockham’s razor is like that: deviating
from it reduces epistemic costs (e.g., errors or
retractions) in some complex worlds, but the
improvement subtly entails still greater num-

1Sometimes this bias is hidden by the Bayesian ap-
paratus. Consider two competing theories, T,T[q],
where « is an adjustable, real-valued parameter. It
would be “unfair” to start out with an infinite bias
against the simple theory T, so suppose that T, T[«]
both have non-extremal, real-valued prior probabilities.
But T'[a] can be true in continuum many ways (one for
each setting of @), so each parameter setting of T[]
has infinitesimal prior probability with respect to the
unique parameter setting of 7. This prior bias against
parameter settings of T[] is why 7" ends up much bet-
ter confirmed than T'[a] on data explained by T but
only under particular parameter settings of T'[a]. We
say that it would “be a miracle” if T'[a] were true. But
the miracle is in ourselves, not the world, since it is a
reflection of our infinite, prior bias against worlds in
which T'[o] is true.



bers of errors and retractions in other worlds,
so that one’s overall (i.e., worst-case) epistemic
costs are increased. In other words, Ockham’s
razor may optimize overall, epistemic efficiency
even though it points in the wrong direction in
some (or even most) of the possibilities under
consideration.? That is just what I claim.

In a nutshell, the idea is this. Complex
worlds present signs (“anomalies”) that wit-
ness their complexity, whereas simple worlds
do not. So if you conclude that an “anomaly”
will appear prior to seeing one, Nature is free
to withhold anomalies until you concede that
none will appear (on pain of converging to the
wrong answer). Thereafter, Nature is free to
present one, forcing you to change your mind
yet again, for a total of two retractions (note
the further embarrassment that they lead in
a circle back to where you started). Had you
sided against anomalies until seeing one, you
would have succeeded with at most one retrac-
tion (without a cycle of opinions), for Nature
cannot “take back” an anomaly once it has
been presented.

This simple idea extends to cases in which
there is no finite bound on the number of
anomalies that might occur. The extension
is necessary for deriving Ockham’s razor from
error-efficiency, for whenever the problem of
induction arises, there is no finite bound on
errors prior to convergence to the truth (e.g.,
Nature can delay presenting the white raven
arbitrarily long after we have concluded that
all ravens are black).

The general results are stated in the next
section. Readers who prefer examples to prin-
ciples may prefer to read section 3 first.

2The idea of counting retractions prior to conver-
gence was first invoked (for purely logical ends) by Hi-
lary Putnam [9]. Counting retractions as a definition
of the intrinsic difficulty or complexity of an empirical
problem has seen a great deal of study in computational
learning theory. A good reference and bibliography may
be found in [6]. What follows is heavily indebted to
Freivalds and Smith [4] and refines the topological per-
spective on learning developed in [14].

2 Results

An empirical problem consists of a set of mu-
tually exclusive possible answers that jointly
exhaust the problem’s presupposition, which is
the set of possible worlds over which a cor-
rrect answer must be given. FEach world af-
fords a potentially infinite sequence of inputs
to the learner. A learning method responds
to each finite sequence of inputs with a po-
tential answer or with ‘?’, which indicates re-
fusal to choose an answer. A method solves
an empirical problem just in case it stabilizes,
eventually, to a correct answer to the question
in each world compatible with the problem’s
presupposition. R. Freivalds and C. Smith [4]
have devised an ingenious definition of solving
a problem under a transfinite retraction bound
that generalizes the more straightforward con-
cept of finitely bounded retractions introduced
in [9]. The following results are based on a
refinement of Freivalds’ and Smith’s idea.

Worlds are simpler (roughly) insofar as they
present “fewer” anomalies. The Ockham an-
swer is (quite roughly) the unique answer sat-
isfied by the simplest worlds compatible with
the current inputs.? This concept reflects intu-
itive simplicity in particular cases (cf. section
3) and also permits one to prove the following,
mathematical theorem.

Proposition 1 If a solution to a problem is
error or retraction-efficient and the method
outputs an informative answer, then the an-
swer is the (unique) Ockham answer given the
current inputs.

In the case of error-efficiency, the converse also
obtains.

3 An answer uniquely satisfied by the simplest worlds
compatible with the inputs is Ockham and the Ockham
answer is an answer for which the least upper bound
on the simplicities of the worlds that satisfy it is mini-
mum. Neither converse holds, however (since simplicity
admits of transfinite degrees, the supremum of the sim-
plicities of worlds satisfying a hypothesis may exceed
the complexity of any such world).

“The proofs are based on what I call “surprise com-
plexity”: a topological invariant that generalizes both
Cantor-Bendixson rank and Kuratowski’s (transfinite)
difference hierarchy [7].



Proposition 2 The error-efficient solutions
to a problem are exactly the solutions that
never output an informative answer other than
the (unique) Ockham answer for the current
data.

The converse doesn’t hold for retraction-
efficiency. Retreat from an informative answer
to ‘7 counts as a retraction, but not as an
error. So minimizing retractions must impose
some restriction on skeptical retreats as well as
on one’s choice among informative answers.

Proposition 3 The retraction-efficient solu-
tions to a problem are exactly the solutions
that never retract an informative answer un-
til a corresponding anomaly has occurred.

Proposition 3 explains another realist attitude:
the mere possibility of an alternative explana-
tion doesn’t undermine the current scientific
consensus unless the alternative explanation is
simpler.

Propositions 2 and 3 have a surprising corol-
lary.

Proposition 4 If a solution to a problem
never retracts an informative answer unless an
anomaly occcurs, then it never adopts an an-
swer unless that answer is the (unique) Ock-
ham answer in light of the current inputs.

The surprise is that a constraint on when to
drop what you accepted could entail a con-
straint on which answer to adopt in the first
place. The explanation is that if you accept a
needlessly complex answer, the constraint on
retraction will prevent you from ever dropping
it, so you won’t converge to the right answer.
Thus, simplicity and resolution are essentially
bound to one another by the concept of con-
vergent success.

There is a possible escape hatch for the anti-
realist: if efficiency is not achievable at all, then
efficiency implies Ockham’s razor only in the
trivial sense that it implies everything. But
the escape comes with a cost, for it is available
only if the presuppositions of the problem are
empirically inscrutable even in the ideal limit
of inquiry.

Proposition 5 If a problem has a solution
that converges to ‘?” when the presupposition
of the problem is false, then the problem has an
error and retraction-efficient solution, so the
preceding results apply non-trivially.

It is familiar wisdom that convergence in the
limit is compatible with any crazy behavior in
the short run [2]. The preceding results re-
verse this wisdom (with a vengeance) when
we require efficient convergence. An error-
efficient method is forced to side with the Ock-
ham hypothesis if it sides with any hypothesis
at all, and a retraction-efficient method is also
forced to hang on to its simple theory until an
anomaly signals that it may be dropped.

3 Illustrations

The precise definitions underlying the preced-
ing results cannot be developed in this brief
note. Instead, I will illustrate them with some
simple examples. It should be kept in mind,
however, that the general results apply as long
as the problem at issue is solvable in the limit
and its presupposition is decidable in the limit
(proposition 5); a condition satisfied by empir-
ical problems infinitely more complex than any
of the following examples.

Uniformity of nature. Suppose that, for
whatever reason, the possibilities on the table
are worlds in which all inputs are green and in
which all inputs are grue;, where a grue; ob-
servation is green up to and including ¢ and
blue thereafter. The question is which kind
of world we are in. The “natural” approach
is to eventually become sure that the world
is “uniformly” green and to retract to grue,
only after a blue input (an “anomaly”) is re-
ceived at t. This approach retracts at most
once (when the first blue input is received).
But if one were ever to project grue; prior to
receipt of a blue input, Nature would be free
to continue presenting green inputs until one
retracts to “all inputs are green”, on pain of
converging to the wrong answer when all inputs
are green. Thereafter, Nature could present all
blue inputs, exacting two retractions in a prob-



lem that could be solved under a unit retrac-
tion bound. By a similar argument, projecting
“forever green” minimizes errors, but the least
feasible error bound is w. The results general-
ize if we add worlds of type grue; ;s whose in-
puts are green through ¢, blue through ¢’ and
then green thereafter, grue; s v, and so forth,
as long as there is a finite bound on the number
of “anomalies” [10] [11].

The point of Nelson Goodman’s [5] grue,
construction was to show that uniformity is rel-
ative to description and that definitional sym-
metry blocks any attempt to favor one descrip-
tion over another on syntactic grounds. The
preceding argument does not appeal to uni-
formity relative to a description or to syn-
tactic definitional form, however. It hinges,
rather, on a description-independent, topolog-
ical asymmetry in the branching structure of
the possible input streams compatible with the
presuppositions of the problem. The “forever
green” input stream is the unique input stream
for which distinct input streams compatible
with the problem “veer off” infinitely often
(no input streams compatible with the prob-
lem veer off of “forever grue,” after stage t).
This property is preserved under Goodman’s
translation into the grue,/bleen; language, for
the translation is just a one-to-one relabeling of
the inputs along each input stream, which evi-
dently leaves branching structure of the prob-
lem intact.® The proposed conception of sim-
plicity is contextual, in the sense that the same
world can be simple or complex, depending on
the problem we face [1]. For example, we can
make the “forever grueg” world into the spine
by considering only the worlds “forever grue;”,
..., “forever grueg”, “forever green”, and “for-
ever grueg;”, for all £ > 9. Why should one
say that “forever grueg” is the simplest or most
uniform answer in this problem when the syn-
tactically “uniform” answer “forever green” is
available? Because in the spine world in which
“forever grueg;” is true, the intrinsic difficulty

°In mathematical jargon, grue-like translations are
just continuous automorphisms of the problem with re-
spect to the “branching” or Baire space topology re-
stricted to the problem’s presupposition.

of the problem never drops, no matter how
much experience one receives. In all the al-
ternative worlds, there is a time after which
some answer is determinately verified, so that
finding the right answer becomes trivial, so the
structure of the problem one faces is fundamen-
tally altered. This idea can be generalized by
transfinite recursion to yield non-trivial, infi-
nite degrees of simplicity.

Conservation laws. Ockham’s razor is
(roughly) a matter of presuming that the ac-
tual world is among the simplest worlds com-
patible with the current inputs. The principle
accords with a surprising variety of “simplic-
ity” judgments. For example, a familiar policy
in particle physics is to posit the most restric-
tive conservation laws compatible with reac-
tions that are known to have occurred [3][17].
Here, the “spine” world is one in which only the
known reactions are possible and “veering” oc-
curs when a new type of reaction that is not
permitted by the earlier conservation laws is
observed. If there are at most n particles, all
of which are observable, then by an argument
like the preceding one, achievement of the least
feasible retraction bound in each subproblem
demands that one never choose a conservation
theory compatible with a non-observed reac-
tion [12].

Curve fitting. In the context of curve
fitting, simplicity is often identified with the
polynomial degree of a curve’s equation. Sup-
pose we wish to know the degree of an empiri-
cal curve from evidence gathered with error < e
and it is known that the true degree is n. If we
guess a degree higher than k£ when £ is the least
degree compatible with the inputs, Nature is
free to make it appear that the true degree is k
until we take the bait (on pain of converging to
the wrong answer). Thereafter, Nature is free
to choose a curve of properly higher degree that
remains compatible with the inputs presented
so far and to present inputs from it until we
retract. Nature can force another retraction in
this way for each further degree < n, for a total
of n — k 4+ 1 when n — k would have sufficed.

Theoretical unification. Copernican as-
tronomy, Newtonian physics, the wave the-



ory of optics, evolutionary theory, and chaos
theory all won their respective revolutions by
providing unified, low-parameter explanations
of phenomena for which their competitors re-
quired many. Suppose that there is a se-
ries of logically independent, empirical laws
Lg,...,L, and a corresponding series of mu-
tually exclusive theories such that T; entails
Lg,...,L;. Let the presupposition of the prob-
lem be that one of the theories T is true and
that if T; is true, then some counterexamples to
Liyq,..., L, will appear, for otherwise, the to-
tal inputs for eternity would not distinguish 7;
from T;1. Suppose we were to accept T; a pri-
ori, where ¢ < n. Then Nature could withhold
counterinstances to Lg,..., L, until we revise
to L, (on pain of converging to the wrong an-
swer). As soon as we do so, she is free to feed
a counterexample to L,, to force us to retract
to T,,_1, and so forth, for a total of n + 1 re-
tractions when the obvious, Ockham method
would have succeeded with at most n.5

Causal simplicity. Ockham’s razor is of-
ten understood as a bias toward fewer causes.
Our understanding of causal inference has im-
proved considerably in recent years [13] [8].
Instead of “reducing” causation to probabilis-
tic or modal relations, the idea is to axiom-
atize the connection between probability and
causation.” A consequence of these axioms is
that there is a direct, causal connection be-
tween two variables (one way or the other) just
in case the two variables are probabilistically
dependent conditional on each subset of the
remaining variables. One then says that the
two variables are d-connected. Otherwise, they

5The argument doesn’t recommend the choice of a
unifying theory over the conjunction of the unified laws,
however, as these alternatives are not mutually exclu-
sive. Nor does it explain why we should choose a unified
theory over a complex competitor when it is possible
that the data could be the same for eternity, regardless
of which is true.

"One of these assumptions, called faithfulness [13],
essentially says that if the world is causally complex,
eventually we will see data (i.e., a sufficiently large sam-
ple) in which a causally simple story looks bad. This
is similar to the assumption I invoked in the preceding
example.

are d-separated. The methodological question
is what to infer now, from the available data.
Spirtes et al. have proposed the following
method (which I oversimplify). For each pair of
variables X, Y, perform a standard statistical
test of independence of X and Y conditional
on each subset of the remaining variables. If
every such test results in rejection of the null
hypothesis of independence, conclude that X
and Y are d-connected and add a direct causal
link between X and Y (without specifying the
direction). Otherwise, provisionally conclude
that there is no direct causal connection. In
other words, assume the smallest number of
causes compatible with the outcomes of the
tests. By an argument analogous to those al-
ready given, one must follow such a procedure
or Nature could elicit more retractions than
necessary (at most n retractions are required
by the algorithm proposed by Spirtes et al.,
one for each possible direct causal connection
among the variables under consideration).?

4 Piece-meal Efficiency

The anti-realist may find some comfort in the
following result, which offsets the optimism
suggested by proposition 5.

Proposition 6 If a problem is error or
retraction-efficiently solvable, then some an-
swer is eventually verified in some world satis-
fying the presuppositions of the problem.

For example, if we presuppose that the curve
we are fitting has at most degree n, then even-
tually all degrees < n are refuted so degree n is
verified. If there were no such a priori bound,
however, no polynomial degree would ever be
verified so by the preceding result, no method
is an efficient solution and the proposed reason
for preferring simple theories is trivial. The
same point applies to uniformity of nature if

8Here, I neglect the small probability of a mistaken
rejection. For a more literal learning theoretic analysis
of statistical tests, cf. [14], chapter 3. For an explic-
itly statistical treatment of issues dealing with related
themes, cf. [16].



no finite, a priori bound on “breaks in unifor-
mity” is presupposed.

The approach may be extended to such
problems in a piece-meal sense [12]. Say that
problem P’ is a coarsening of a given problem
P if each answer to P’ is a (possibly infinite)
disjunction of answers to P. A method that
outputs answers to the original problem P is
not charged for an error (or retraction) in the
coarsening P’ as long as it outputs (or contin-
ues to output) a disjunct of the right answer
in P’. Then a method is piece-meal efficient
in the original problem P if it is efficient in
each coarsening of P that has an efficient so-
lution. As one would hope, accordance with
Ockham’s razor is necessary for piece-meal er-
ror and retraction-efficiency in each of the pre-
ceding examples when the finite bounds are re-
laxed.
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