
Belief Revision via Lamarckian Evolution

Evelina Lamma, Fabrizio Riguzzi
Department of Engineering, University of Ferrara,

Via Saragat 1, 44100 Ferrara, Italy

Lúıs Moniz Pereira
Centro de Inteligência Artificial - CENTRIA,

Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa,
2829-516 Caparica, Portugal

Abstract

We present a genetic algorithm for performing belief re-
vision in a multi-agent environment. In this setting, dif-
ferent individuals are exposed to different experiences.
This may happen because the world surrounding an
agent changes over time or because we allow agents
exploring different parts of the world. The algorithm
permits the exchange of chromosomes from different
agents and combines two different evolution strategies,
one based on Darwin’s and the other on Lamarck’s evo-
lutionary theory. Experiments on a problem of digital
circuit diagnosis and on the n-queen problem show that
the addition of the Lamarckian operator in the single
agent case improves the fitness of the best solution, even
if in the digital circuit case the fitness difference is not
significant. Moreover, the experiments show that the
distribution of constraints, even if it leads to a decrease
of the fitness of the best solution, does not produce a
significant difference. Keywords: Evolutionary Systems,

Belief Revision, Multi-agent Systems.

1 Introduction

Herein, we propose a genetic algorithm for belief revi-
sion that includes, besides Darwin’s operators of selec-
tion, mutation and crossover [14], a logic based Lamar-
ckian operator as well. This operator differs from Dar-
winian ones precisely because it modifies a chromosome
so that its fitness is improved by experience rather than
in random way.

We venture that the combination of Darwinian and
Lamarckian operators will be useful not only for stan-
dard belief revision problems, but especially for prob-
lems where different chromosomes may be exposed to
different constraints and environmental observations.
In these cases, the Lamarckian and Darwinian oper-
ators play different rôles: the Lamarckian one is em-
ployed to bring a given chromosome closer to a solution
(or even find an exact one) to the current belief revision
problem, whereas the Darwinian ones exert the rôle of
randomly producing alternative belief chromosomes so

as to deal with un-encountered situations, by means of
exchanging genes amongst them.

We tested this hypothesis on multi-agent joint be-
lief revision problems. In such a distributed setting,
agents usually take advantage of each other’s knowl-
edge and experience by explicitly communicating mes-
sages to that effect. As multiple-population GAs (see
[5], for discussion), we allow knowledge and experience
to be coded as genes in an agent and consider several
sub-populations which exchange individuals occasion-
ally. In particular, genes are exchanged with those
of other agents, not by explicit message passing but
through the crossover genetic operator. The new off-
spring agent chromosomes can be naturally selected ac-
cording to their gene coded knowledge governing their
behaviour.

Crucial to this endeavour, we introduce a logic-based
technique for modifying cultural genes, i.e. memes, on
the basis of individual agent experience. The tech-
nique amounts to a form of belief revision, where a
meme codes for an agent’s belief or assumption about
a piece of knowledge, and which is then diversely mod-
ified on the basis of how the present beliefs may be
contradicted by observations and laws (expressed as in-
tegrity constraints). These self mutations are indeed
performed as the outcome of the chromosome pheno-
type’s (i.e., agent’s) experience while solving a belief
revision problem. They are directed by a belief re-
vision procedure, which relies on tracing the logical
derivations leading to inconsistency of belief, so as to re-
move the latter’s support on gene coded assumptions by
mutating the memes involved. Each agent possesses a
pool of chromosomes containing such diversely modified
memes, or alternative assumptions, which cross-fertilize
Darwinianly amongst themselves. Such an experience-
influenced genetic evolution mechanism is aptly called
Lamarckian.

To illustrate how these mechanisms, of individual
agent Lamarckian evolution and of Darwinian agent ge-
netics, can jointly lead to improved single agent pop-
ulation behaviour in collaborative problem-solving, we

apply them to distributed model-based diagnosis of dig-
ital circuits, a natural domain in which belief revision
techniques apply [6], and to the n-queen constraint sat-
isfaction problem.

The paper is organized as follows. We first review
some logic programming fundamentals, and give a defi-
nition of the belief revision problem in section 2. Then
we describe the algorithm together with the Lamarck-
ian operator in section 3. The results of experiments
with the algorithm are shown in section 4. We exam-
ine related works in section 5, and draw conclusions in
section 6.

2 Preliminaries

We consider belief revision of first order theories ex-
pressed in the language of extended logic programs [3].
For this language, we adopt the Extended Well Founded
Semantics (WFSX) that extends the well founded se-
mantics (WFS) [18] for normal logic programs to pro-
grams extended with explicit negation, besides the im-
plicit or default negation of normal programs.

Extended logic programs are liable to be contradic-
tory because of integrity constraints, either those that
are user-defined or those of the form ⊥ ← L,¬L that
are implicitly assumed. The revisables of a program P
are the elements of a chosen subset Rev(P), of the set
of all literals L having no rules for them in P . The
set Rev(P) contains also, for each objective literal L in
Rev(P), its default complement not L.

3 A genetic algorithm for multi-agent belief
revision

The algorithm here proposed for belief revision extends
the standard genetic algorithm (described for example
in [14]) in two ways:

• crossover is performed among chromosomes be-
longing to different agents,

• a Lamarckian operator called Learn is added in
order to bring a chromosome closer to a correct
revision by changing the value of revisables.

Each agent executes the following algorithm:

GA(Fitness,max gen, p, r,m, l)
Fitness : a function that assigns an evaluation

score to a hypothesis coded as a chromosome
max gen : the maximum number of generations

before termination
p: the number of individuals in the population
r: the fraction of the population to be replaced

by Crossover at each step
m: the fraction of the population to be mutated

at each step
l: the fraction of the population that should

evolve Lamarckianly at each step

Initialize population: P ← generate p hypotheses
at random

Evaluate: for each h in P , compute Fitness(h)
gen← 0
While gen ≤ max gen
Create a new population Ps:

Select: Probabilistically select (1− r)p
members of P to add to Ps. The probability
Pr(hi) of selecting hypothesis
hi from P is given by
Pr(hi) = Fitness(hi)

Σp
j=1Fitness(hj)

Crossover:
For i=1 to rp

Probabilistically select an hypothesis h1

from P , according to Pr(h1) given
above

Obtain an hypothesis h2 from another
agent chosen at random

Crossover h1 with h2 obtaining h′

Add h′ to Ps

Mutate: Choose m percent of the members
of Ps with uniform probability. For each,
invert one randomly selected bit in
its representation

Learn: Choose lp hypotheses from Ps with
uniform probability and substitute each
of them with the modified hypotheses
returned by the procedure Learn

Update: P ← Ps

Return the hypothesis from P with the highest
fitness

In belief revision, each individual hypothesis is de-
scribed by the truth value of all the revisables. Since
we consider a two-valued revision, each hypothesis gives
the truth value true or false to every revisable and
therefore it can be considered as a set containing one
literal, either positive or default, for every revisable. A
chromosome is obtained by associating a bit to each re-
visable that has value 1 if the revisable is true and 0 if
it is false.

Various fitness functions can be used in belief revi-
sion. The simplest fitness function is the following

Fitness(hi) =
ni

n

where ni is the number of integrity constraints satisfied
by hypothesis hi and n is the total number of integrity
constraints. We will call it an accuracy fitness function.
Another possible fitness function is the following

Fitness(hi) =
ni

n
× n

n + |hi| +
fi

|hi| ×
|hi|

n + |hi|
where fi is the number of revisables in hi that are false,
and |hi| is the total number of revisables. We will call

it a hybrid fitness function. In this way, the fitness
function takes into account both the fraction of con-
straints that are satisfied and the number of revisables
whose truth value must be changed to true, preferring
hypotheses with a lower number of these, that is mini-
mal revisions are encouraged.

The Lamarckian operator Learn changes the values
of the revisables in a chromosome C so that a bigger
number of constraints is satisfied, thus bringing C closer
to a solution.

This is done by modifying the belief revision tech-
niques presented in [15]. In particular, in [15] an al-
gorithm for belief revision is presented that is based
on the notions of support sets, hitting sets and removal
sets. Intuitively, a support set of a literal is the set of
revisables supporting the derivation of the literal. The
hitting set of a collection C of sets is formed by the
union of one non-empty subset from each S ∈ C. A
hitting set is minimal iff no proper subset is a hitting
set. A removal set of a literal is a hitting set of all
the support sets of the literal. Contradiction in [15] is
removed by finding the removal set of ⊥.

The Lamarckian operator Learn works in the follow-
ing way: given a chromosome C, it finds all the support
sets for ⊥ such that they contain literals in C. These
support sets are called Lamarckian support sets (a for-
mal definition for them is given in [12]). Therefore, it
does not find all support sets for ⊥ but only those that
are subsets of C.

Since the Lamarckian support sets for ⊥ represent
only a subset of all the support sets for ⊥, a hitting
set generated from them is not necessarily a contra-
diction removal set and therefore it does not represent
a solution to the belief revision problem. However, it
eliminates some of the derivation paths to ⊥ and, there-
fore, may increase the number of satisfied constraints,
thus improving the fitness, as required by the notion of
Lamarckian operator.

In the case of the experiments we consider in sec-
tion 4, the support sets procedure becomes simplified
in that the occurrences of default negated literals per-
tain only to revisables. This simplification results in
the procedure that is reported below.

procedure Learn(C, C ′)
inputs : A chromosome C translated into a set

of revisables
outputs : A revised chromosome C ′

Find the support sets for ⊥:
Support sets([⊥], C, {}, {}, SS)

Find a hitting set HS: Hitting set(SS,HS)
Change the value of the literals in the chromosome

C that appear as well in HS

procedure Support sets(GL,C, S, SSin, SSout):
inputs :

GL a list of goals
A chromosome H translated into a set

of revisables
The current support set S
The current set of support sets SSin

outputs :
A set SSout containing the support sets

for each goal in the list

If GL is empty, then return SSout = SSin
Consider the first literal L of the first goal G of GL

(GL = [G|RGL] using Prolog notation for lists)
(1) if G is empty then add the current support

set to SSin and call recursively
the algorithm on the rest of GL
Support sets(RGL, H, {}, SSin ∪ {S}, SSout)

(2) if G is not empty (G = [L|RG]) then:
(2a) if L is a revisable and is in H, then add it

to S, set to 1 L’s access bit and call
the algorithm recursively on the rest of G
Support sets([RG|RGL],H, S ∪ {L}, SSin,
SSout)

(2b) if L is a revisable and it is not in H, or its
opposite is in H, then set to 1 L’s access bit,
discard S and call the algorithm recursively
on the rest of GL
Support sets(RGL, H, {}, SSin, SSout)

(2c) if it is not a revisable then reduce it with
all the rules, obtaining the new goals
G1, ..., Gn, one for each matching rule,
add the goals to GL and call the algorithm
recursively Support sets([[G1|RG], ...,
[Gn|RG]|RGL],H, S, SSin, SSout)

(2d) if it is not a revisable and there are no
rules, then call the algorithm on
the rest of GL
Support sets(RGL, H, {}, SSin, SSout)

procedure hitting set(SS, HS):
Pick a literal from every support set in SS
Add it to HS if it does not lead to contradiction
(i.e. the literal must not be already present

in its complemented form).
If it leads to contradiction pick another literal.

When computing the support sets, the Lamarckian
operator also modifies an extra bit associated with each
meme each time the meme is considered in the compu-
tation of Lamarckian support sets. This bit indicates
whether the meme has been “accessed” by the opera-
tor. This is needed for the crossover operator that is
described below.

The crossover operator is an extension of a standard
uniform crossover operator. The crossover operator
produces a new offspring from two parent chromosomes
by copying selected bits from each parent. The bit at
position i in the offspring is copied from the bit in po-

sition i in one of the two parents. The choice of which
parent provides the bit for position i is determined by
an additional string called crossover mask. This string
is a sequence of bits each of which has the following
meaning: if bit in position i is 0, then the bit in posi-
tion i in the offspring is copied from the first parent,
otherwise it is copied from the second parent. In uni-
form crossover, the mask is generated as a bit string
where each bit is chosen at random and independently
of the others.

In our setting, one of the parents comes from the
agent local population, while the other comes from the
population of another agent. However, not all the bits
in the chromosome are treated equally. In particular,
we distinguish genes from memes: genes are modified
only by Darwinian operators, while memes are modified
by Darwinian and Lamarckian operators. Genes in the
offspring can be copied from both parents, while memes
can be copied from the parent coming from another
agent only if they have been “accessed” by the other
agent as a result of the application of the Lamarckian
operator.

In this way, an agent can acquire from another agent
only memes that have been checked for consistency.
Therefore, the flow of memes is asymmetrical and goes
from a “teacher” to a “learner”, but not vice versa. In
particular, in the asymmetrical crossover operator the
mask is generated again as a random bit string and
crossover is performed in the following way: if the i-th
bit in the mask is 1 and the i-th bit in the other agent’s
chromosome has been accessed, then the i-th bit of the
offspring is copied from the other agent’s chromosome,
otherwise it is copied from the local agent’s chromo-
some.

Simplified versions of this algorithm have also been
considered in order to test the effectiveness of the fea-
tures added to the standard genetic algorithm. In par-
ticular, four algorithms have been considered named in
the sequel algorithms 1, 2, 3 and 4. Algorithm 1 is
a standard single agent genetic algorithm: crossover is
performed only among chromosomes of the same agent
and the Lamarckian operator is not used. Algorithm 2
adds to algorithm 1 the use of the Lamarckian opera-
tor, with a parameter l (percentage of the population
to be mutated Lamarckianly) equal to 0.6 and the spe-
cial treatment of memes in crossover. Algorithm 3 is a
multi-agent algorithm without the Lamarckian opera-
tor, i.e., crossover is performed between chromosomes
of different agents but the operator Learn is not applied
to them. Algorithm 4 extends algorithm 3 by adding
the Lamarckian operator, with a parameter l equal to
0.6, and the special treatment of memes in crossover.
For all the algorithms, the mutation rate (parameter
m) and the crossover rate (parameter r) have been set
to 0.2.

Mark that in algorithms 3 and 4 the agents share
the same set of observations and program clauses but

have different sets of observations. Each agent scores
the chromosomes according to the constraints it has,
thus using a local fitness function. At the end of the
computation, in order to find a single solution for the
revision problem, the best chromosome in each agent
is considered and is scored with a fitness function that
considers all the constraints (global fitness function).
Then the chromosome with the highest global fitness is
returned as the solution. In this way the multi-agent
system finds a solution for the global belief revision
problem.

These algorithms have been used in order to experi-
mentally prove the following theses:

1. Lamarckism plus Darwinism outperforms Darwin-
ism alone in the single agent case;

2. the distributed algorithm (with or without the
Lamarckian operator) has a performance that is
comparable (and, in particular, not significantly
inferior) to that of the non-distributed one, in the
same number of generations and the same overall
number of individuals;

As regards thesis 2, we require only that the difference
is not significant because we can not expect an improve-
ment from distributing constraints with respect to the
centralized case where all the information is available.
Therefore our aim is to prove that the decrease in fit-
ness is not significant.

4 Experiments

The algorithms have been tested on a number of belief
revision problems in order to prove the above theses.
In particular, we have considered problems of digital
circuit diagnosis, as per [6], and the n-queen problem.

In order to evaluate if the accuracy differences be-
tween algorithms are significant or not, we have com-
puted a 10-fold cross-validated paired t test for every
pair of algorithms (see [?] for an overview of statisti-
cal tests for the comparison of machine learning algo-
rithms). This test is computed as follows. Given two
algorithms A and B, let pA(i) (respectively pB(i)) be
the maximum fitness achieved by algorithm A (respec-
tively B) in trial i. If we assume that the 10 differences
p(i) = pA(i) − pB(i) are drawn independently from a
normal distribution, then we can apply the Student t-
test by computing the statistic

t =
p̄
√

n√∑n

i=1
(p(i)−p̄)2

n−1

where n is the number of folds (10) and p̄ is

p̄ =
1
n

n∑

i=1

p(i)

In the null hypothesis, i.e. that A and B obtain the
same fitness, this statistic has a t distribution with n−1
(9) degrees of freedom. If we consider a probability of
90%, then the null hypothesis can be rejected if

|t| > t9,0.90 = 1.383

A problem of digital circuit diagnosis they can be
modelled as a belief revision problem by describing
it with a logic program consisting of four groups of
clauses: one that allows to compute the predicted out-
put of each component, one that describes the topology
of the circuit, one that describes the observed inputs
and outputs, and one that consists of integrity con-
straints stating that the predicted value for an output
of the system cannot be different from the observed
value. The revisables are literals of the form ab(Name)
which, if true, state that the gate Name is faulty. The
representation formalism we use is the one of [6].

If the digital circuit is faulty, one or more of the con-
straints will be violated. By means of belief revision,
the values of the revisables are changed in order to re-
store consistency.

Usually, the number of faulty components is very
small, very often one or two. This means that only one
or two revisables of the form ab(Name) will be true,
while all the other will be false. Therefore, in order to
speed up the search for a solution, we have modified
the genetic algorithm so that a chromosome with all
the genes set to 0 (all revisables false) is added to the
initial population. Moreover, the hybrid fitness func-
tion is used, in order to take into account not only the
number of satisfied constraints but also the number of
false literals in the solution.

The system has been tested on some real world prob-
lems taken from the ISCAS85 benchmark circuits [4]
that has been used as well for testing the belief revision
system REVISE [6].1

We have considered the voter circuit that has 59
gates and 4 outputs, corresponding respectively to 59
revisables and 8 constraints.

Algorithms 1, 2, 3 and 4 have been tested on the
voter circuit. Each algorithm was run 10 times. The
parameters that have been used for the runs are: 10
maximum generations, 40 individuals for algorithms 1
and 2 (single agent), 10 individuals per agent and 4
agents for algorithms 3 and 4. In algorithms 3 and 4
each agent has the same set of observations and pro-
gram clauses, while the integrity constraints are dis-
tributed among the agents so that each agent knows
only the constraints that are related to one same out-
put.

Table 1 shows, for each algorithm, the value of the
fitness function for the best hypothesis averaged over
the 10 runs together with its standard deviation, while

1These examples can be found at
http://www.soi.city.ac.uk/∼msch/revise/.

Algorithm Fitness Standard Deviation
1 0.9537 0.0349
2 0.9582 0.0154
3 0.9776 0.0079
4 0.9806 0.0072

Table 1: Voter experiments with algorithms 1, 2, 3, 4
and 5

Comparison |t| value
1-2 0.394
1-3 1.751
2-4 3.737

Table 2: Result of the t-test for different couples of
algorithms on the voter dataset.

table 2 shows the value of the t statistics for the various
couples of algorithms.

As can be seen, algorithm 2 has a higher fitness than
algorithm 1 but the difference is not significant, there-
fore the usefulness of the Lamarckian operator (thesis
1) is only partly verified. The fitness increment be-
tween algorithms 1 and 3 shows that in this case the
distribution of constraints has helped in finding a good
solution and thus proves thesis 2 that required the per-
formance of the multi agent case to be comparable (and,
in particular, not significantly inferior) to that of the
single agent case. Similarly, the fitness increment be-
tween algorithms 2 and 4 also proves thesis 2 when the
Lamarckian operator is used. In both cases a fitness
significantly higher than the single agent case has been
obtained, thus showing that in this case the distribu-
tion of constraints has helped. The low values for the
standard deviation in all cases show that the results do
not heavily depend on the initial population.

The n-queen problem consists in positioning n queens
over a n×n checkerboard so that no queen attacks each
other. This problem can be seen as a Constraint Satis-
faction Problem (CSP) where the constraints are: the
total number of queens must be n; for each row, the to-
tal number of queens must not be bigger than one; for
each column, the total number of queens must not be
bigger than one and, for each diagonal, the total num-
ber of queens must not be bigger than one. This prob-
lem can be seen as a belief revision problem by assigning
a revisable of the form queen(Row,Column) to each po-
sition (Row,Column) in the checkerboard. Then, each
constraint of the CSP can be written as an integrity
constraint.

Algorithms 1, 2, 3 and 4 have been tested also on the
n-queen problem with the same parameter as for the
voter experiment: each algorithm was run 10 times,
each run had 10 maximum generations, 40 individuals
for algorithms 1 and 2 (single agent), 10 individuals

Algorithm Fitness Standard Deviation
1 0.7581 0.0669
2 0.8233 0.0120
3 0.7930 0.0299
4 0.8070 0.0311

Table 3: n-queen experiments with algorithms 1, 2, 3,
4 and 5

Comparison |t| value
1-2 1.497
1-3 1.255
2-4 0.937

Table 4: Result of the t-test for different couples of
algorithms on the n-queen dataset.

per agent and 4 agents for algorithms 3 and 4. The
accuracy fitness function was adopted.

We have considered a problem with n = 8. In this
case there is a total of 43 constraints: 1 constraint for
the total number of queens, 8 constraints for the rows,
8 for the columns and 26 for the diagonals. For multi-
agent experiments each agent has the same set of ob-
servations and program clauses, while the constraints
were divided amongst them: 2 constraints on the rows
and 2 on the columns have been assigned to each agent,
while the constraints on diagonals have been divided in
groups of 6, 6, 7 and 7 and correspondingly assigned
to the agents. The constraint on the total number of
queens has been assigned to one of the agents with only
6 constraints on the diagonals. Therefore, three agents
have 9 constraints and one agent has only 8.

Table 3 shows, for each algorithm, the value of the fit-
ness function for the best hypothesis averaged over the
10 runs while table 4 shows the value of the t statistics
for the various couples of algorithms.

As can be seen, in this case theses 1 and 2 are con-
firmed. In fact, there is a significant increment between
algorithms 1 and 2 (thesis 1) and the performance in the
multi-agent case is inferior to that of the single agent
case but not significantly (thesis 2). Again, the low val-
ues for the standard deviation in all cases show that the
results do not heavily depend on the initial population.

5 Related Work

Various authors have investigated the integration of
Darwinian and Lamarckian evolution into a genetic al-
gorithm [11, 1, 13, 9]. A Lamarckian operator first
translates a genotype into its corresponding phenotype
and performs a local search in the phenotype’s space.
The local optimum that is obtained is then translated
back into its corresponding genotype and added to
the population for further evolution. [11] has shown

that the traditional genetic algorithm performs well for
searching widely separated portions of the search space
caused by a scattered population, while Lamarckism is
more proficient for exploring localized areas of the pop-
ulation that would otherwise be missed by the global
search of the genetic algorithm. Therefore, Lamarck-
ism can play an important rôle when the population
has converged to areas of local maxima that would not
be thoroughly explored by the standard genetic algo-
rithm. The adoption of a Lamarckian operator provides
a significant speedup in the performance of the genetic
algorithm.

Similarly to the approaches in [11, 1, 13, 9], we adopt
a procedure for Lamarckian evolution that first trans-
lates the chromosome into its phenotype and then mod-
ifies it in order to improve its fitness. In our case too the
Lamarckian operator improves the performance of the
genetic algorithm. Differently from [11, 1, 13, 9], the
procedure does not perform a local search but finds an
improvement by tracing the logical derivations causally
supporting the undesired behaviour.

Our work is also related to co-evolutive approaches
and distributed GAs (see [16, 5]. It can be considered a
cooperative co-evolutionary approach (see [16]) to be-
lief revision since knowledge about the domain problem
(and constraints in particular) are spread among the
agents, each of which is ruled by a GA. In this respect,
each species represents a possibly partial solution to
the belief revision problem. While in [16] the complete
solutions (to the problem of function optimization, in
that paper) are obtained by assembling the representa-
tive members of each of the species present, in our work
the solution is obtained by evolution and exchange be-
tween species, and by the application of the crossover
operator to members of two species, the foreigner of
which may have already gained in experience (i.e., it
evolved Lamarckianly).

Relating our work to the field of belief revision, it
must be noted that the kind of belief revision we con-
sider, namely the removal of inconsistency from an in-
consistent knowledge base, differs from the definition
of belief revision given by Alchourrón, Gärdenfors and
Makinson in [2], i.e. the incorporation of new informa-
tion into a knowledge base such that the new knowledge
base is consistent. The belief revision problem we con-
sider has been called consolidation by Hansson [10].

Other authors in the belief revision field have consid-
ered the problem of updating the knowledge in a multi-
agent system. [8] considers the case of an agent that
has to update its knowledge base with information com-
ing from different sources: in this case the agent must
be able to assign a different credibility to the different
sources. We consider as well the problem of knowledge
updating from multiple sources (the other agents) but
we assign the same credibility to the other sources. [7]
considers a setting where an agent maintains a set of
beliefs regarding another agent and updates the beliefs

from the observation of the other agent’s behaviour. In
[7] the authors provide a belief revision methodology
that is able to cope particularly well with this inter-
esting special case. In our work, instead, we provide
a general belief revision approach, without considering
any special cases.

6 Conclusions and Future Work

We have proposed a novel way of looking at belief revi-
sion, which is GA based, and hence a new application
domain for GAs. Since it is still in the initial develop-
ment stages it cannot be expected yet to compete with
hard-boiled methods for belief revision. On the other
hand, we believe our method to be important for sit-
uations where classical belief revision methods hardly
apply: Those where environments are non-uniform and
time changing. These can be explored by distributed
agents that evolve genetically to accomplish coopera-
tive belief revision, using our approach. Notwithstand-
ing, some type of efficient hybrid implementation ap-
proach might emerge, combining hard-boiled belief re-
vision techniques with the newly introduced GA sup-
plement. Our contribution has been to get the new
approach off the ground.

7 Acknowledgements

L. M. Pereira acknowledges the support of PRAXIS
project MENTAL “An Architecture for Mental
Agents”. E. Lamma and F. Riguzzi acknowledge the
support of the EC project IST-2001-32530 SOCS .

References

[1] D. H. Ackely and M. L. Littman. A case for lamar-
ckian evolution. In C. G. Langton, editor, Artificial
Life III. Addison Wesley, 1994.

[2] Carlos Alchourrón, Peter Gärdenfors, and David
Makinson. On the logic of theory change. Journal
of Symbolic Logic, 50(2):510–530, 1985.

[3] J. J. Alferes, L. M. Pereira, and T. C. Przymusin-
ski. “Classical” negation in non-monotonic reason-
ing and logic programming. Journal of Automated
Reasoning, 20:107–142, 1998.

[4] F. Brglez, P. Pownall, and R. Hum. Acceler-
ated ATPG and fault grading via testability anal-
ysis. In Proceedings of IEEE Int. Symposium on
Circuits and Systems, pages 695–698, 1985. The
ISCAS85 benchmark netlist are available via ftp
mcnc.mcnc.org.

[5] Erick Cant-Paz. A survey of parallel genetic algo-
rithms.

[6] C. V. Damásio, L. M. Pereira, and M. Schroeder.
REVISE: Logic programming and diagnosis.
In Proceedings of Logic-Programming and Non-
Monotonic Reasoning, LPNMR’97, volume 1265
of LNAI, Germany, 1997. Springer-Verlag.

[7] Fiorella de Rosis, Rino Falcone, Emanuele Covino,
and Cristano Castelfranchi. Bayesian cognitive di-
agnosis in believable multiagent systems, 1999.

[8] A. Dragoni and P. Giorgini. Revising beliefs re-
ceived from multiple source, 1999.

[9] J. J. Grefenstette. Lamarckian learning in multi-
agent environment. In Proc. 4th Intl. Conference
on Genetic Algorithms. Morgan Kauffman, 1991.

[10] S. Hansson. Belief base dynamics, 1991.

[11] W. E. Hart and R. K. Belew. Optimization with
genetic algorithms hybrids that use local search.
In R. K. Belew and M. Mitchell, editors, Adap-
tive Individuals in Evolving Populations. Addison
Wesley, 1996.

[12] E. Lamma, L. M. Pereira, and F. Riguzzi. Multi-
agent logic aided lamarckian learning. Technical
Report DEIS-LIA-00-004, Dipartimento di Elet-
tronica, Informatica e Sistemistica, University of
Bologna (Italy), 2000. LIA Series no. 44.

[13] Y. Li, K. C. Tan, and M. Gong. Model reduction in
control systems by means of global structure evo-
lution and local parameter learning. In D. Das-
gupta and Z. Michalewicz, editors, Evolutionary
Algorithms in Engineering Applications. Springer
Verlag, 1996.

[14] T. M. Mitchell. Machine Learning. McGraw Hill,
1997.

[15] L. M. Pereira, C. V. Damásio, and J. J. Alferes. Di-
agnosis and debugging as contradiction removal. In
L. M. Pereira and A. Nerode, editors, Proceedings
of the 2nd International Workshop on Logic Pro-
gramming and Non-monotonic Reasoning, pages
316–330. MIT Press, 1993.

[16] M. Potter and K. de Jong. A cooperative coevolu-
tionary approach to function optimization, 1994.

[17] Mitchell A. Potter, Kenneth A. De Jong, and
John J. Grefenstette. A coevolutionary approach
to learning sequential decision rules. In Larry Es-
helman, editor, Proceedings of the Sixth Interna-
tional Conference on Genetic Algorithms, pages
366–372, San Francisco, CA, 1995. Morgan Kauf-
mann.

[18] A. Van Gelder, K. A. Ross, and J. S. Schlipf. The
well-founded semantics for general logic programs.
Journal of the ACM, 38(3):620–650, 1991.

