
Negation as Finite Failure is Paraconsistent

P. Mascellani
Mathematics Department

Siena University
via del Capitano 15, Siena, Italy

Abstract Paraconsistent logics are generally
considered somewhat esoteric. Moreover, some-
one argued that they simply not exist, because
paraconsistent negations are not negations. The
aim of this work is to provide some valid reasons
to reject both these assumptions.

Negation as finite failure (NAF) is the stan-
dard way to compute negation, used, for instance,
by all the known (to me) Prolog implementations.
Despite its well-known drawbacks, it is the only ef-
fective way to compute negation in logic program-
ming. Moreover, none has ever argued that NAF
is not a “negation”, in the proper sense, although
it is not a “classical negation”.

It is quite simple to show that NAF exhibits
paraconsistent behaviors, and this is yet another
way to show that paraconsistent negations can
be “true negations”. Moreover, this implies that
studies on paraconsistency are not so esoteric as
they can appear at a first sight: for instance, they
can provide the logics community with a clean def-
inition of what a “negation” is.

Keywords: Non-Classical Logic, Logic Program-
ming, Many-Valued Logic, Deductive Databases

1 Introduction

Logic programming is a way to do computa-
tions using logics or, from another point of
view, is a way to provide a computational
behavior to logics. The latter point of view
has not been deeply investigated yet, but we
think that it can help in finding the answers
to some open questions of logic studies.

One of these question is the definition of
negation: although almost everyone has an
intuitive notion of what it is, it is still a
controversial question. In recent years, this
question has been raised by studies on “para-
consistent” logics; these esoteric logics (some-
one, see for instance [15], pretends that they
doesn’t exist) try to investigate “negation”
operators that doesn’t obey to the princi-
ple that from a contradiction everything can
be deduced (“Ex falso sequitur quod libet”).
The problem is that a mess of unary opera-
tors that do not obey this principle has been
defined in classical and modern logics, but it
is hardly sustainable that all these operators
are “negations”.

Needless to say, there is not a general
agreement on what a “negation” is.

Instead of trying to give our definition, we
start from an empirical fact: negation has
been widely investigated in logic program-
ming, mainly because classical negation has
the awful characteristic of being not com-
putable, and several definitions of negation
have been proposed in order to give a com-
putable behavior to negation. At the end of
this process, negation as finite failure, has be-
come the standard way to compute negation
for logic programs. What is important to
note here, is that none, as long as we know,
has ever argued that negation as finite failure
is not a negation.

The following step, is to investigate nega-

tion as finite failure from the point of view of
its consistency: quite surprisingly, negation
as failure exhibits a paraconsistent behavior.
Moreover, it is possible to study the proper-
ties of the paraconsistent logic corresponding
to negation as finite failure.

1.1 Plan of the paper

In the sequel of this section we briefly in-
troduce some basic concept about logic pro-
grams. The next two section are also intro-
ductory: in Section 2, the definition of nega-
tion as finite failure is given and briefly stud-
ied; in Section 3, the same is done concern-
ing some different definitions of paraconsis-
tent negation.

In Section 4, we face the question of
whether negation as finite failure is, or is
not, a paraconsistent negation. In Section
5, some interesting properties of negation as
finite failure are investigated, in order reach
a deeper understanding and to classify it.

In Section 6, some final remarks are given
and some future developments are proposed.

The work ends with an essential bibliogra-
phy.

1.2 Preliminaries

Throughout this paper the standard notation
of Lloyd [10] and Apt [2] is used. A (gen-
eral) logic program is a set of (general) Horn
clauses, i.e. a set of pairs A← Ls, where A,
called the head of the clause, is an atomic
formula and Ls, called the body, is a possibly
empty sequence of literals, which, in turn, are
possibly negated atomic formulae. Clauses
with empty bodies are called facts.

In logic programming, terms beginning
with an uppercase character are considered
logic variables, while terms beginning with
lowercase characters are considered constants
or function symbols (constants are simply
function symbols with arity 0).

The Herbrand universe is the set of all the
terms that can be build using a countable
number of different constants and functional
symbols of every arity. Given a logic program
(or theory) T , we denote with ground(T), the
set of all the clauses of T , instantiated with
every possible term of the Herbrand universe.

A query is a sequence of literals. Given
a program T and a query Q, the standard
process of computing the most general sub-
stitutions θ such that T |= θQ, if a such
substitution exists, is called SLD-resolution;
this process produces SLD-derivations. If an
SLD-derivation ends with a suitable substi-
tution it is called a refutation, otherwise is a
failure.

2 Negation as finite failure

Many efforts have been produced in order to
give a computable behavior to negation in the
context of logic programming. The first at-
tempt, was to establish that everything that
cannot be proven true, is false’ ; however, this
“closed word assumption” (CWA) is clearly
non-decidable, hence, the statement has been
weakened to the “negation as finite failure”
(NAF) one: every query for which every SLD-
resolution finitely fails is false.

NAF is computable (semi-decidable, for
the sake of precision), but, of course, fails
to say something about some formulae (those
that produce infinite SLD-resolutions). In or-
der to take this into account, computer sci-
entists have switched from the original two-
valued to many-valued logics. In particular,
a quite satisfactory environment, has been
found in 3-valued logic.

Definition 2.1 Let T be a logic program
with negation in the body of the clauses.
Then:

1. A 3-valued (Herbrand) interpretation I
is a pair (I+, I−), where I+ and I− are

disjoint subsets of the Herbrand base of
T .

2. I |= L iff

{
L = A and A ∈ I+ or
L = ¬A and A ∈ I−

3. I |= Ls, where Ls is a sequence of literals
(possibly negated atomic formulae), iff,
for every L ∈ Ls, I |= L.

I |= ¬Ls, iff exists L ∈ Ls, such that
I |= ¬L (where ¬¬A is considered as A).

4. The immediate consequence operator of
T is defined as follows:

ΦT (I) = (J+, J−)

where J+ is the set:

{A | ∃A← Ls ∈ ground(T) : I |= Ls}

and J− is the set:

{A | ∀A← Ls ∈ ground(T) : I |= ¬Ls}

5. A 3-valued interpretation M is a model
of T iff ΦT (M) ⊆M . 2

Under this framework, it is straightforward
to prove the following.

Theorem 2.2 Let T be a logic program and
MT its least 3-valued model. Then: MT is
the least fix-point of ΦT . 2

However, the restriction of Definition 2.1
that the positive and the negative part of a
3-valued interpretation have to be disjoint, is
unnecessary and can be dropped without any
consequence on Theorem 2.2 (see [11]).

2.1 Bottom-up computations

An alternative way to compute a logic pro-
gram, is the so called “bottom-up” compu-
tation, mainly used in deductive databases.
Given an atomic formula a:

T ` a iff Φi
T (∅, ∅) |= a for some i

Theorem 2.2 prove that SLD-resolution and
the bottom-up resolution are equivalent.

3 Paraconsistent negations

Not every unary logical operator can be con-
sidered a “negation”; however, it not clear
which conditions must a negation operator
fulfill. By the way, this is maybe one im-
portant topic that studies on paraconsistency
can clarify.

Many logicians agree, at least, on some
negative criteria, i.e. criteria that distinguish
classical negation from paraconsistent nega-
tions. Discussions on this topic are outside
the scope of this work; we only mention that
these criteria can be syntactical as well as se-
mantical.

In the sequel, we will use the following def-
initions. From the syntactical point of view:

Definition 3.1 A negation operator is para-
consistent iff, for some theory T and formulae
a, b:

T, a,¬a 6` b

2

Sometimes, a different definition of para-
consistent negation is also used.

Definition 3.2 A negation operator is para-
consistent iff, for some theory T and formula
a:

T ` ¬(a ∧ ¬a) (1)

does not hold. 2

However, Definition 3.2 is not equivalent to
Definition 3.1; moreover, Definition 3.2 is not
“pure”, in the sense that it relies with another
logical operator, namely the “∧” operator.

From the semantical point of view, we can
say:

Definition 3.3 A model M is trivial iff, for
every formula b:

M |= b

A “negation” operator is paraconsistent iff
exist a non-trivial model M and a formula
a such that:

M |= a and M |= ¬a

2

4 Paraconsistency of NAF

If none ever argued that NAF is not a “nega-
tion”, the question is: “is it a paraconsistent
negation”? Let we apply the above defini-
tions:

• Definition 3.1 cannot be expressed as a
logic program.

• Definition 3.2 is fulfilled considering an
atom a which give raise to an infinite
SLD-resolution or; in other words, if
there is no i for which either Φi

T (∅, ∅) |=
a or Φi

T (∅, ∅) |= ¬a; however, this does
not seem to catch the intuitive meaning
of paraconsistency (it seems to be related
with the excluded middle principle).

• Definition 3.3 requires that a ∈M+ and
that a ∈ M−, which is impossible, by
Definition 2.1, since M+ ∩M− = ∅.

Hence, the only criterion saying that NAF
is paraconsistent is the more controversial.
However, the request of disjointness of the
positive and the negative part of a 3-valued
interpretation, has been shown unnecessary1

and, in some sense, damaging; for instance,
it is impossible to denote a trivial model. In
[11] is shown that, if we follow this sugges-
tion and drop this restriction, we obtain an
equivalent logic.

Using this semantics for logic programs, we
can conclude, using the semantic criterion,

1Apparently, such request has been made only to
avoid risks of inconsistencies

that NAF is paraconsistent. For instance, we
can have the following model:

M = ({a, b} , {a})

It is straightforward to observe that M is not
trivial (M 6|= ¬b); hence, it is paraconsistent
(M |= a and M |= ¬a).

How is it that the semantic criterion leads
to a result different from the syntactic one?
This contradiction is only apparent: indeed,
we simply cannot express the syntactic crite-
rion of Definition 3.1, and this does not imply
that the criterion is not fulfilled. Concern-
ing Definition 3.2, it is clearly unfulfilled, but
many paraconsistentists think that it is not
the right definition of paraconsistent nega-
tion, but only an interesting property (they
say that a paraconsistent logic for which (1)
holds is a full paraconsistent logic (see, for
instance, [6]).

The conclusion is that all the applicable
criteria show that NAF is paraconsistent.

4.1 Syntactical criterion revisited

Is it possible to modify something in our
framework, in order to check the paracon-
sistency of NAF also against the syntactic
criterion? Let us think at the bottom-up
computation of logic programs: it is widely
used in deductive databases, where the logic
program is generally divided into an “inten-
sional” database, containing the rules (the
real program, in some sense), and the “exten-
sional” database, containing only facts (the
data).

If we admit that the data can be “con-
troversial”, i.e. that the extensional database
contains both positive and negative facts, we
can apply the criterion and, once again, find
a paraconsistent behavior.

Example 4.1 Consider the program:

a←

¬a←
b←

that can also be viewed as an extensional
database. Obviously, it is impossible to de-
rive, for instance, ¬b, or c. 2

In order to be more precise and to compute
the consequences of the program of Example
4.1, we need to give a definition of immedi-
ate consequence operator for this kind of pro-
grams:

Definition 4.2 Consider a logic program T ;
the immediate consequence operator T is de-
fined as follows: ΦT (I) = (J+, J−), where J+

is the set:

{A | ∃A← Ls ∈ ground(T) : I |= Ls}

and J− is the set:A |
∀A← Ls ∈ ground(T) : I |= ¬Ls

or
∃¬A← Ls ∈ ground(T) : I |= Ls

2

Now we can observe that the minimum
model of the program of Example 4.1 (re-
stricted to the functional symbols and con-
stants that appear in it) is ({a, b} , {b}),
hence, we cannot derive ¬b from it. Once
again, a paraconsistent behavior. It should
be noted that Definition 4.2 can be adopted
also if we consider clauses with bodies or, in
other words, if we add an intensional part to
the database.

5 Properties of NAF

It is well-known that there are properties
that cannot hold together in a paraconsis-
tent logic: for instance, a paraconsistent logic
cannot be full, adjunctive, involutive and self-
extensional. In order to investigate the prop-
erties of NAF, we need to define them:

Table 1: AND truth table
∧ H T U F
H H T U F
T T T U F
U U U U F
F F F F F

Table 2: OR truth table
∨ H T U F
H H H H H
T H T T T
U H T U U
F H T U F

Definition 5.1 A paraconsistent logic is:

• full if, for every theory T and formula a:

T ` ¬(a ∧ ¬a)

• self-extensional if the following (replace-
ment theorem) holds in it: if T, a ` b and
T, b ` a, then T ` c iff T ` c after that a
has been replaced by b in T and c;

• truth-functional if can be described by a
finite matrix. 2

We already showed that NAF leads to
a non-full paraconsistent logic. This logic
is also clearly self-extensional, as we can
see both thinking at the SLD-resolution and
at the bottom-up computation. Concern-
ing truth-functionality, this logic can be de-
scribed by the 4-valued truth-functional ma-
trices of Tables 1, 2 and 3.

In which we can intuitively explain the val-
ues as T for true, F for false, U for undefined,
and H for hyper-defined.

We can explain these tables with some ex-
ample:

Example 5.2 The following program AND:

Table 3: NOT truth table
a ¬a
T F
U U
H H
F T

a← b, c

can be used to explain the AND truth-table
(Table 1). For instance, if in some model M
we have that M |= b, M |= ¬b, and M |= c,
we can say that b is hyper-defined and c is
true; the consequence is that M |= a, but
M 6|= ¬a, hence a is true, that explains why
H∧T=T. 2

Example 5.3 The OR truth-table (Table 2)
can be explained in terms of the following
“OR” program:

a← b
a← c

considering a model M analogous to the pre-
vious, we obtain that M |= a and M |= ¬a,
hence a is hyper-defined (H∨T=H). 2

Example 5.4 The NOT truth-table (Table
3 can be explained in terms of the following
“NOT” program:

a←¬b

considering, for instance, a model M in which
b is true, we obtain that M |= ¬a, hence a is
false (¬T=F). 2

6 Conclusions

In [6] Béziau says that no paraconsistent log-
ics “with interesting mathematical properties
together with a coherent and intuitive inter-
pretation” has been proposed until now. We

think that such an object is already here: it
is computational logic. In some sense, it is
extremely intuitive that the “ex falso” prin-
ciple is not computationally “safe” and that
it has to be rejected in order to build a com-
putational logic; however, this have not been
realized until now.

In this paper, we begin to study this par-
ticular kind of logic from the paraconsistency
point of view, but we hope that future works
will unveil several interesting of its character-
istics. Conversely, computational logic can
make the paraconsistent logics community
aware that the object of its studies not only
exists, but is central in theoretical computer
science. For instance, in [11] it is shown that
the use of paraconsistent models can be use-
ful in logic program verification.

A question that arise from all these studies
is: “what is a negation”? If the closest com-
putable approximation of classical negation
exhibits a paraconsistent behavior, the ques-
tion cannot be simply stated saying that the
essence of negation is the “ex falso” princi-
ple and that paraconsistent negations are not
negations.

More studies should be devoted to the re-
lationships between computational logic and
many-valued logics. The four-valued logic
sketched in this work is closely related to the
Belnap’s logic (see [3]). However, we think
that we have provided e new evidence of its
usefulness; moreover, our derivation of the
truth-tables is motivated by a well-founded
computational model (see also [9]).

Another open field is to build a computa-
tional logic system, such as Prolog or Dat-
alog, that exploits these characteristics and
allows to compute the consequences of con-
tradictorial theories. Such a system can
be useful in every field where computational
logic has been already used, such as de-
ductive and inductive reasoning (including
databases), data mining, and so on.

References

[1] K.R. Apt and D. Pedreschi. Reasoning
About Termination of Pure Prolog Pro-
grams. Information and computation,
106(1):109–157, 1993.

[2] K.R. Apt. Logic programming. In J. van
Leeuwen, editor, Handbook of Theoreti-
cal Computer Science, volume B, pages
493–574. Elsevier, 1990.

[3] N.D. Belnap. A Useful Four-valued Logic.
In, Modern Uses of Multiple-valued Log-
ics. D. Reidel, Dordrecht. 1977.

[4] J.Y. Béziau. Logiques Construites Suiv-
ant les M’etodes de da Costa Logiques et
Analyse. 1990.

[5] J.Y. Béziau. Idempotent Full Paracon-
sistent Negations are not Algebraizable
Notre Dame Journal of Formal Logic.
1998.

[6] J.Y. Béziau. Are Paraconsistent Nega-
tions Negations? Second World
Congress on Paraconsistency. Juquehy,
Brazil, 2000.

[7] N.C.A. da Costa. Calculs Propositionels
pour les Systémes Formels Inconsistants.
Comptes Rendus de l’Académies des Sci-
ences de Paris. 1963.

[8] M. Fitting. A Kripke-Kleene Semantics
for General Logic Programs. Journal of
Logic Programing 2, pages 295–312.

[9] F. Fages P. Ruet. Combining Explicit
Negation and Negation by Failure via Bel-
nap’s Logic. LIENS, 94-15. 1994.

[10] J.W. Lloyd. Foundations of Logic Pro-
gramming. Springer-Verlag, Berlin, sec-
ond edition, 1987.

[11] P. Mascellani. Declarative Verification of
General Logic Programs. Student session,
ESSLLI-2000. Birmingham UK, 2000.

[12] P. Mascellani and D. Pedreschi. Proving
Termination of Prolog Programs. In, Pro-
ceedings 1994 Joint Conf. on Declarative
Programming GULP-PRODE ’94, pages
46–61, 1994.

[13] P. Mascellani and D. Pedreschi. To-
tal Correctness of Prolog Programs. In
F.S. de Boer and M. Gabbrielli, editors,
Proceedings of the W2 Post-Conference
Workshop ICLP’94. Vrije Universiteit
Amsterdam, 1994.

[14] P. Mascellani and D. Pedreschi. The
Declarative Side of Magic. to appear,
2001.

[15] B. H. Slater. Paraconsistent Logics?
Journal of Philosophical Logic, 24, 451-
454. 1995.

[16] I. Urbas. Dual-intuitionistic Logic.
Notre Dame Journal of Formal Logic.
1996.

