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Abstract. We present a bi-valued semantics for
default logic appealing to maximal sets, instead of a
fixed point of an operator as it is done by its creator
Raymond Reiter. It has the advantage of precluding
incoherent theories (theories with no extension), and
it fixes many drawbacks of Reiter’s original
formalism, This approach is then generalized, using
a many-valued logic (the logic FOUR of Belnap) as
the underlining semantics, to construct a
paraconsistent and nonmonotonic logic. Besides, we
introduce a new notation for defaults which
represents them as formulae and not as (pseudo)
inference rules. The resulting formalism is both
simples and powerful.
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1 Some drawbacks in default logic

Default logic has been introduced by Raymond
Reiter in 1980 [2]. Along the years it has
become the most popular nonmonotonic
formalism in Artificial Intelligence. Reiter
introduces a default as an inference rule which
allows the derivation of a proposition from
absence of information. Let L be a first-order
language as usually defined. The general form
of a default is α : β1, ..., βn / β, where first-order
logic formula α is called the prerequisite,
β1, ..., βn, for n ≥ 1, are called the justification
and β is called the consequent. Seminormal
defaults are defaults of the form α: β, β1 / β,
where the first justification and the consequent
coincide. A default of the form α: β / β is called
a normal default. A default is closed if all its
component formulae are closed. A default
theory is a pair <W, D> where W is a set of

formulae and D is a set of defaults. A default
theory is closed if both sets are composed of
closed expressions only. For any set of
formulae S define Th(S) = {α ∈  L ; S |- α},
where (|- ) denotes classical logic derivation.

Let <W, D> be a default theory, Reiter
defines extension, the set of theorems from
<W, D>, as follows. For any set S ⊆  L, let Γ(S)
be the smallest set satisfying the following three
properties:
(1) W ⊆  Γ(S)
(2) Th(Γ(S)) = Γ(S)
(3) If α : β1, ..., βn / β ∈  D and α ∈  Γ(S), and

¬β 1, ..., ¬β n ∉  S, then β ∈  Γ(S).
A set of closed formulae E ⊆  L is an extension
for <W, D> iff Γ(E) = E. That is, E is a fixed
point of the operator Γ.

In spite of the great success and popularity
default logic achieved in its 20 years of
existence, there are several drawbacks in
Reiter’s original formulation in need to be
fixed.

•  Language. Defaults as presented by Reiter,
are not real inference rules, since the
derivation of the conclusion depends upon
the non-derivation of the justification, and
non-derivation cannot be established locally,
it depends on verifying everything derived
from the whole theory, a rather untractable
and indeed undecidable problem.
Nonmonotonicity and undecidibility of
default logic arise exactly from this feature.
Considering a default as just another
formula could be much simpler and natural.

•  Meaningless defaults. Prerequisite, multiple
justification and arbitrary defaults are totally
dispensable and their use is misleading and



counter-intuitive. Only prerequisite free
normal and seminormal defaults are
necessary.

•  Extensions. The definition of extension as a
fixed point is non-constructive and leads to
undesired consequences. Any
automatization of default logic must avoid
the fixed point.

•  Incoherence. In consequence of extensions
being fixed points some theories have no
extension.

•  Anomalous extensions. Probably the most
serious drawback of default logic and the
other seminal logics presented in [3], it has
been pointed out by Hanks and McDermott
[4] back in 1987. Generating unexpected
extensions, default logic draws conclusions
not vindicated by common sense,
jeopardizing its soundness.

•  No semantics. Default logic has been
introduced by Reiter syntactically, via
pseudo inference rules, and no later attempt
to provide semantics to default logic has
indeed succeeded [5, 6, 7].

The maximal default logic presented next fixes
all these drawbacks. Furthermore, the semantics
proposed for it allows generalization for
paraconsistent and multi-valued semantics as it
is done in section 4.

2 Maximal default logic

We present a default logic called, maximal
default logic, that fixes all drawbacks
mentioned in the foregoing section. A more
complete presentation of maximal default logic
is done in [1].

2.1 Language

We adopt classical first-order logic language L
augmented with a new connective (∝ ) for
representing defaults. Defaults are expressions
of the form β ∝  γ, where β and γ are first-order
formulae and γ is optional. β is called the
conclusion and γ  the exception. β ∝  γ reads as
“β unless γ”. The semantical intuition behind it
is that the non-satisfaction of γ implies (and it is
implied by) the satisfaction of β. The

syntactical intuition is that β should be inferred
if it is consistent (with the extension) and γ is
not inferred (in the extension). A default theory
is a pair <W, D>, where W is a set of first-order
formulae and D is a set of defaults. A default is
closed if its component formulae are closed. A
default theory is closed if both sets are
composed of closed expressions only.
Henceforth all default theories are closed. Let S
be a set of defaults, define
CONS(S) = {β ; β ∝  γ ∈  S}.

2.2 No meaningless defaults

It is easy to see that the default formula β ∝  γ
corresponds to Reiter seminormal default
 :β, ¬γ / β and default formula
β ∝  corresponds to normal default :β / β.
These are the only defaults that are necessary
for nonmonotonic reasoning and defaults with
prerequisites, multiple justifications and
arbitrary defaults of any sort are dispensable.

2.3 Extensions

In order to define extensions for a default
theory, the set of theorems, Reiter appeals to a
fixed point of an operator on sets of formulae.
This is non-constructive and causes some
theories to have no extension. In our approach
an extension is determined by a maximal subset
of defaults, according to definition 1.

Definition 1. Let <W, D> be a default theory.
A set S ⊆  D is a generating set of an extension
iff S is a maximal set of defaults such that

1. W ∪  CONS(S) is consistent;
2. If β ∝  γ ∈  S then γ ∉  Th(W ∪  CONS(S)).

S maximal with respect to properties (1) and (2)
means that for for all S’ ⊆  D, such that (1) and
(2) hold for S’ and S ⊆  S’, then S = S’.
E = Th(W ∪  CONS(S)) is the maximal
extension for <W, D>.



2.4 No incoherent theories

Theorem 1 assures that all default theories
<W, D> have a maximal extension (different
from L as long as W is consistent). The proof is
just an adaptation of Lindenbaum theorem that
asserts that any consistent set of first-order
formulae can be extended to a maximal
consistent set.

Theorem 1. Let <W, D> be a default theory
where W is consistent, then there is a maximal
extension for <W, D>.

Theorem 2 shows that our definition
generalizes the one given by Reiter since all
extensions according to Reiter’s definition are
maximal extensions, but the converse is not
true, as it is shown by the incoherent theories.

Theorem 2. Let <W, D> be a default theory
and D’ = { :β, ¬γ / β ; β ∝  γ ∈  D}. If E is an
extension for <W, D’>  according to Reiter then
E is a maximal extension for <W, D>.

Example 1.

W = ∅
D = {A ∝  B, B ∝  C, C ∝  A}
D’ = { :A, ¬B / A, :B, ¬C / B, :C, ¬A / C}

The theory <W, D> has three maximal
extensions, namely: E1 = Th(A), E2 = Th(B) and
E3 = Th(C). However, the theory <W, D’>  has
no extension according to Reiter.

2.5 No anomalous extensions

Anomalous extensions in default logic arise
whenever the exception to a default is itself
derived by (another) default. The two defaults
are, then, incompatible, in the sense that they
cannot be generating defaults to a same
extension. Therefore, they are split in two
extensions, one containing the first default and
the other containing the exception. Common
sense reasoning adheres to the latter extension,
and the former is considered to be unintuitive or
anomalous.

Let us state the problem in the formalized
language.

Example 2. The pattern1.

W = {C ∧  A}
D = {(A → ¬F) ∝  B, (B → F) ∝ , (C → B) ∝ }

Notice that B is indeed an exception to the fact
that A implies ¬F not only because it bars the
derivation of the implication but also because it
implies F. This theory has two (maximal)
extensions namely:

E1 = Th(C ∧  A, B → F, C → B} and
E2 = Th(C ∧  A, B → F, A → ¬F}

E1 is the extension vindicated by common sense
while E2 is an anomalous extension.

The principle that states that the derivation of
an exception has priority over the derivation of
the default to which it is an exception, the
situation on pattern of example 2, has been
called in [9] the exceptions-first principle. It is a
very general and formal (it does not depends on
the semantics of the theory) principle. It applies
to all contexts independently on the subject
matter, might it be temporal projection, causal
relations, frame problem, or any other sort of
epistemic situation which requires practical or
common sense reasoning.

To implement the exceptions-first principle
an ordering on defaults is introduced in which a
default is lesser than another, if it relevant (in
the context of the theory) to the derivation of an
exception to the latter. The set of generating
defaults of an extension is then built respecting
this ordering, i.e., defaults of higher order
cannot rule out from the extension a default
lesser than it.

Definition 2. Let <W, D> be a default theory,
α a formula and R ⊆  D. R is a support set for α
iff:

1. W ∪  CONS(R) is consistent;

2. α ∈  Th(W ∪  CONS(R));

                                                     
1 The anomalous pattern appeared for the first time in [8]

back to 1989.



3. R is minimal with respect to ⊆ , i.e., if there is
R’ ⊆  R which satisfies conditions 1 and 2,
then R = R’.

R is intended to be a minimal set of defaults
which is used to prove α. Notice that a formula
may have several associated support sets.

Definition 3. Let <W, D> be a default theory,
d1, d2 and d3 be defaults in D and α be a
formula. Then:

1. d1 « α iff d1 ∈  R, for some support set R of α;

2. d1 ‹i d2 iff d2 is of the form β ∝  α and d1 « α;

3. d1 ‹ d2 iff (a) d1 ‹i d2 or (b) there is a default d3

such that d1 ‹ d3 and d3 ‹ d2.

Intuitively d « α implies that the conclusion of
d may be used to prove α; d1 ‹i d2 means that the
conclusion of d1 may be used to prove the
exception of d2; and relation ‹ is the transitive
closure of ‹i.

Definition 4. A default theory <W, D> is
acyclic iff there is no default d ∈  D such that
d ‹ d. Hence ‹ is a strict order among defaults of
an acyclic theory.

The theory in example 1 is cyclic, while the
theory in example 2 is acyclic, it is not
coincidence that in example 1 the default theory
has no extension. Etherington proved in [5] that
to be acyclic is a sufficient, but not necessary,
condition for a default theory to have an
extension in Reiter’s sense. Our definition of
maximal extension complying with the
exceptions-first principle applies only to acyclic
theories, since it requires the order ‹ to be strict.

Definition 5. Let <W, D> be an acyclic default
theory. A set S ⊆  D is a generating set of an
extension complying with the exceptions-first
principle iff S is a maximal set of defaults such
that

1. W ∪  CONS(S) is consistent;
2. If β ∝  γ ∈  S , then ; γ ∉  Th(W ∪  CONS(S));
3. For all d ∈  S, if d’ is of the form β ∝  γ and

d’ ‹ d and d’ ∉  S, then β is inconsistent with

Th(W ∪  S<d’), or γ ∈  Th(W ∪  S<d’), where
S<d’ = {d ∈  S ; d’ ⁄‹ d}.

S is maximal with respect to properties (1), (2)
and (3) means that for all S’ ⊆  D, such that (1),
(2) and (3) hold for S’ and S ⊆  S’, then S = S’.
E = Th(W ∪  CONS(S)) is the maximal
extension for <W, D> complying with the
exceptions-first principle.

Example 2 revisited.

W = {C ∧  A}
D = {(A → ¬F) ∝  B, (B → F) ∝ , (C → B) ∝ }

Notice that (C → B) ∝  ‹ (A → ¬F) ∝  B and this
theory is acyclic. Therefore
E1 = Th(C ∧  A, B → F, C → B} is the only
maximal extension complying with the
exceptions-first principle.

3 Semantics for maximal default
logic

Let I be a first-order logic interpretation.
Satisfaction of a formula ϕ (I |=  ϕ) of a set of
formulae Γ and the consequence relation
(Γ |=  ϕ) is defined as in classical logic. I
satisfies a default β ∝  γ (I |=  β ∝  γ) iff I |=  β
and I |⁄=  γ. Given a default theory <W, D> and
an interpretation I, define
ID = {β ∝  γ ∈  D ; I |=  β ∝  γ }. I satisfies a
default theory <W, D> (I |=  <W, D>) iff I |=  W
and ID is maximal, in the sense that, for all I´
such that I´ |=  W and ID ⊆  I´D, then ID = I´D. I is
called a maximal interpretation for <W, D>.
Notice that our notion of interpretation for
default theory appeals to maximality whereas
the corresponding notion of extension in default
logic uses a fixed point. As a matter of fact, in
[1] we show that maximal interpretation is
indeed the semantical counterpart of extension,
since the generating defaults of an extension are
satisfied by a maximal interpretation and vice-
versa.

A default theory <W, D> skeptically entails
a formula α  (<W, D> |=s α) iff for all I such
that I |=  <W, D>, I |= α. <W, D> credulously
entails a formula α (<W, D> |=c α) iff there



exists I such that I |=  <W, D> and for all I´
such that I’ |=  <W, D> and I´D = ID, then I´ |= α.

Example 3.

W = {B, P → B}
D = {(B → F) ∝  P}

For intuition, consider B stands for Bird, P
stands for Penguin, F stands for Fly. Any
interpretation I such that I |=  B, I |=  F, and
I |⁄=  P, satisfies <W, D>. Notice that if an
interpretation I is maximal then
ID = {(B → F) ∝  P}. Hence, <W, D> |=s  F and
<W, D> |=s  B. Notice that neither
<W, D> |⁄=c  P nor <W, D> |⁄=c ¬P.

Example 4.

W = {P, P → B}
D = {(B → F) ∝  P, (P → ¬F) ∝ }

For intuition, consider B stands for Bird, P
stands for Penguin, F stands for Fly. Any
interpretation I such that I |=  P, I |=  B and

I |=  ¬F, satisfies <W, D>. Notice that if an
interpretation I is maximal, ID = {(P → ¬F) ∝ }.
Hence, <W, D> |=s P; <W, D> |=s B and
<W, D> |=s ¬F.

Example 5.

W = {R ∧  Q}
D = {(Q → P) ∝∝∝∝ , (R → ¬P) ∝ }

For intuition, consider R stands for Republican,
Q stands for Quaker, P stands for Pacifist. Any
interpretation I such that I |=  R, I |=  Q, and
I |=  P, or any interpretation I’  such that I’ |=  R,

I’ |=  Q, and I’ |=  ¬P are maximal
interpretations for <W, D>. Notice that
ID = {Q → P) ∝∝∝∝ } and I’ D = {R → ¬P) ∝∝∝∝ }.
Hence, <W, D> |=c  P and <W, D> |=c  ¬P.

Theorem 3 assures that indeed all default
theories <W, D> are satisfied by a maximal

interpretation as long as W is consistent. The
proof is just an adaptation of Lindenbaum
theorem that asserts that any consistent set of
first-order formulae can be extended to a
maximal consistent set.

Theorem 3. Let <W, D> be a default theory
where W is consistent. Then, there exists a
maximal interpretation I that satisfies <W, D>.

4 Paraconsistent Default Logic

Some authors [10] have argued about the
intricacy between nonmonotonicity and
paraconsistency. They claim that these two
properties are complementary. In every pattern
of reasoning where nonmotonicity arises,
paraconsistency is present as well, for in
dealing with incomplete, partial and vague
information, the rising of conflict and
contradiction is inevitable. Hence, many have
been the proposals of formalizing
nonmonotonic reasoning using paraconsistent
logic [11, 12, 13]. In this section we benefit
from our aprroach for default logic presented in
section 3 and we generalize it for introducing a
paraconsistent nonmonotonic logic, using the
multi-valued logic FOUR of Belnap [14] as the
underlining logic for the semantics. FOUR got
its name for having four truth values: the
classical ones t, f, and two new ones: ⊥  that
intuitively denotes lack of evidence and Τ that
indicates “over” evidence, i.e., evidence for the
truth and the falsity of a proposition.

The language is the same as in the maximal
default logic but for simplicity sake we focus
on the propositional language, using the new
connective ∝  for representing defaults. A
default theory is a pair <W, D> of sets of
formulae and defaults and all preliminary
definitions remain unchanged.

The connectives ∧ , → and ¬  get the
following truth tables:

∧∧∧∧ t ƒƒƒƒ ⊥⊥⊥⊥ ΤΤΤΤ →→→→t ƒƒƒƒ ⊥⊥⊥⊥ ΤΤΤΤ ¬¬¬¬
t t ƒ ⊥ Τ t t ƒ ⊥ Τ t ƒ
ƒƒƒƒ ƒ ƒ ƒ ƒ ƒƒƒƒ t t t t ƒƒƒƒ t
⊥⊥⊥⊥ ⊥ ƒ ⊥ ƒ ⊥ ⊥⊥⊥ t t t t ⊥⊥⊥⊥ ⊥
ΤΤΤΤ Τ ƒ ƒ Τ ΤΤΤΤ t ƒ ⊥ Τ ΤΤΤΤ Τ



A valuation is a mapping from the set of
propositional letters into {t, ƒ, Τ, ⊥ }. Any
valuation is extended to complex formulae in
the obvious way. The designated values are t
and Τ. That means that a valuation v satisfies a
formula ϕ (denoted as v |=  ϕ) iff v(ϕ) = t or
v(ϕ) = Τ.
The satisfaction of a default is defined as
before, v |= β ∝  γ iff v |=  β and v |⁄=  γ.
Satisfaction of a default theory also goes as
before. Given a default theory <W, D> and a
valuation v, define
vD = {β ∝  γ ∈  D ; v |= β ∝  γ}. v satisfies a
default theory <W, D> (v |= <W, D>) iff v
satisfies W (v |=  W) and vD is maximal, in the
sense that, for all v´ such that v´ satisfies W and
vD ⊆  v D́, then vD = v´D. v is called a maximal
valuation for <W, D>.

A default theory <W, D> entails a formula α
(<W, D> |=  α) iff for all v such that
v |=  <W, D>, v |=  α.

Example 6.

W = {B, P → B}
D = {(B → F) ∝  P}

For intuition, consider B stands for Bird, P
stands for Penguin, F stands for Fly. Any v
such that v |=  B, v |=  F, and v |⁄=  P, satisfies
<W, D>. Notice that if a valuation v is
maximal, vD = {(B → F) ∝  P}. Hence,
<W, D> |=  F and <W, D> |=  B. Notice that
neither <W, D> |⁄=  P nor <W, D> |⁄= ¬P.

Example 7.

W = {P, P → B}
D = {(B → F) ∝  P, (P → ¬F) ∝ }

For intuition, consider B stands for Bird, P
stands for Penguin, F stands for Fly. Any v
such that v |=  P, v |=  B and v |= ¬F, satisfies
<W, D>. Notice that if v is maximal,
vD = {(P → ¬F) ∝ }. Hence, <W, D> |=  P;
<W, D> |=   B and <W, D> |= ¬F.

Example 8.

W = {R ∧  Q}
D = {(Q → P) ∝∝∝∝ , (R → ¬P) ∝ }

For intuition, consider R stands for Republican,
Q stands for Quaker, P stands for Pacifist. Any
v such that v |=  R, v |=  Q, and v(P) = Τ is
maximal. That is, if v is maximal, then
vD = {(Q → P) ∝ , (R → ¬P) ∝ } Hence,
<W, D> |=  P and <W, D> |=  ¬P.

As in the logic FOUR there are no inconsistent
theories, then any default theory has a maximal
valuation.

Theorem 2. Let <W, D> be a default theory.
Then, there exists a maximal valuation v that
satisfies <W, D>.

5 Application and further work

In this paper we presented the maximal default
logic that improves Reiter’s default logic in
many aspects. It is also presented a semantical
approach for default reasoning based on
maximal sets. This approach revealed to be
very profitable and we generalize it to introduce
a paraconsistent nonmonotonic logic using the
many-valued logic FOUR of Belnap as the
underlining formalism. Arieli and Avron [13]
also developed a paraconsistent nonmonotonic
logic based on the logic FOUR. A future work
should present a through comparison between
these logics finding similarities, dissimilarities,
advantages and disadvantages of both
approaches.

Nonmonotonic reasoning has mainly been
studied for application in Artificial Intelligence.
We believe, now that the area has been
developed to a considerable extent, it may be
useful to a wide range of human knowledge,
specially in philosophy of science [15]. A
theory to be considered scientific must comply
with rigid criteria and live up to strict standards.
Not withstanding that, the state of the art of
science evolves in a rather chaotic scenario,
with the emergency and simultaneous
acceptance of incompatible theories. All this
scenario of conflicting, incomplete and vague



information forms the ambiance from where
nonmonotonic reasoning has emerged.
Therefore, we regard that well understood
nonmonotonic logics might be of much use for
the understanding and normalization of
progress in science.
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