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1. Introduction

Our main topic here is what can be called intra-theoretical scientific inference. By this
term we mean the inferences performed inside scientific theories aimed to go from the
theory’s basic principles to the derived ones. This kind of inferences plays an important role,
for example, in the explanation of scientific laws and singular facts as well as in the
prediction of non-observed facts.

The traditional view concerning intra-theoretical scientific inference states that scientific
arguments are of two types: deductive and inductive/probabilistic. According to this view, all
inferences performed inside scientific theories that cannot be properly represented within
deductive logic can be so represented within an inductive-probabilistic framework. In other
words, all ‘informal’ intra-theoretical scientific arguments can in principle be retrospectively
justified as acceptable arguments by being fitted either into a deductive or into a probabilistic
conceptual frame.

This classification of inferences as either deductive or probabilistic is closely connected
to Rudolf Carnap’s philosophy of induction and probability.' As used by Carnap, the terms
‘probability’ and ‘induction’ embody two reductions. First of all, since Carnap’s theory of
induction aims to account for the non-deductive inferences that have a kind of ‘logical
rectitude’, non-deductive is reduced to inductive. Second, since Carnap’s solution to the
question of what this logical rectitude is about consists of saying that it makes the
conclusions obtained from a set of true premises not true but probable, inductive is reduced
to probabilistic. It is worthy to note that, although Carnap correctly identified three different
notions of probability — the classificatory, the comparative and the quantitative probability —
probability as comprised in this reduction should be understood as a quantitative notion.

This deductive/inductive-probabilistic view of intra-theoretical scientific inferences was
put forward in its most precise form by Carl Hempel’s models of scientific explanation.
Following Carnap’s view on inferences, Hempel proposed his probabilistic-based Inductive-
Statistical (I-S) model of scientific explanation to represent the non-deductive intra-
theoretical scientific inferences. This model however was unable to solve satisfactorily the
so-called problem of inductive ambiguities. As a consequence of this, it revealed the
difficulties in representing non-deductive inferences through a numerical-probabilistic
approach and, more generally, evidenced the untenability of the deductive-
inductive/probabilistic view of intra-theoretical scientific inferences.

Instead of using a quantitative concept as done by the deductive-inductive/probabilistic
view, we propose in this essay to represent the non-deductive intra-theoretical scientific
inferences through the qualitative concept of plausibility. By presenting a formal logical
system of plausibility, we intend to show how the use of such concept has some interesting
advantages over the traditional probabilistic approach. First, it allows a real nonmonotonic
inferential mechanism able to capture the non-deductive character of the kind of scientific
inference stressed here. Second, since it makes possible the representation of priorities among

"' See Carnap (1950).



scientific laws and allows for a paraconsistent inferential mechanism, it gives a real solution
to the problem of inductive ambiguities.

The structure of the paper is as follows. First of all we will introduce Hempel’s I-S model
and show the problems with the probabilistic account of non-deductive intra-theoretical
scientific inferences. This will be done in the Sections 2 and 3. After that we will present a
logical system that formalizes the concept of plausibility and show how it can be used to
represent the intra-theoretical scientific inferences and solve the problems presented by
Hempel’s approach. This will be done in Sections 4 and 5. In Section 6 we will expose some
conclusive remarks.

2. Hempel’s I-S Model

According to most historiographers of philosophy, the history of philosophical analysis of
scientific explanation started with the publication of ‘Studies in the Logic of Explanation’ in
1948 by Carl Hempel and Paul Oppenheim. In this work, Hempel and Oppenheim propose
their deductive-nomological (D-N) model of scientific explanation where scientific
explanations are considered as being deductive arguments that contain essentially at least one
general law in the premises. Later in 1962, Hempel presented his inductive-statistical (I-S)
model by which he proposed to analyze the statistical scientific explanations that clearly
could not be fitted into the D-N model. >

Because of his emphasis on the idea that explanations are arguments and his commitment
to Carnap’s theory of inference, Hempel’s models perfectly exemplify the deductive-
inductive/probabilistic view of intra-theoretical scientific inferences. The D-N model does
not pose any problem to the deductive-inductive/probabilistic view. On the other hand
however, in its attempt to formalize non-deductive arguments through a quantitative notion,
the I-S model presents some difficulties that threat the tenability of this view.

The general schema of non-deductive scientific explanations according to Hempel’s I-S
model is the following:

PG, F)=r
Fb

[r]
Gb

Here the first premise is a statistical law asserting that the relative frequency of Gs among Fs
is 7, r being close to 1. The second premise stands for b having the property F, and the
expression ‘[r]’ next to the double line represents the degree of inductive probability
conferred on the conclusion by the premises. Since the law represented by the first premise is
not a universal but a statistical law, the argument above is inductive (in Carnap’s sense)
rather than deductive.

If we ask, for instance, why John Jones (to use Hempel’s main example) recovered
quickly from a streptococcus infection we would have the following argument as the answer:

(1) P(G,FOH)=r
Fb OHb
[r]

Gb

where F stands for having a streptococcus infection, H for administration of penicillin, G for
quick recovery, b is John Jones, and r is a number close to 1. Given that penicillin was

? The 1948 article is reprinted in Hempel (1965). The I-S model appeared for the first time in Hempel (1962)
and is explained in detail in Hempel (1965).



administrated in John Jones case (Hb) and that most (but not all) streptococcus infections
clear up quickly when treated with penicillin (P(G,FLH) = r), the argument above constitutes
the explanation for John Jones’s quick recovery.

However, it is known that certain strains of streptococcus bacilli are resistant to penicillin.
If it turns out that John Jones is infected with such a strain of bacilli, then the probability of
his quick recovery after treatment of penicillin is low. In that case, we could set up the
following inductive argument:

(2) P(G,FOH) =71 or, equivalently, P(-G,FOHO)=1-r
Fb UUHb UJb Fb UUHb UJb
[r'] [1-r]
Gb -Gb

where J stands for the penicillin-resistant character of the streptococcus infection and r’ is a
number close to zero (consequently 1 —r’ is a number close to 1.)

This situation exemplifies what Hempel calls the problem of explanatory ambiguities or
inductive ambiguities. In the case of John Jones’s penicillin-resistant infection, we have two
inductive arguments where the premises of each argument are logically compatible and the
conclusion is the same. Nevertheless, in one argument the conclusion is strongly supported
by the premises, whereas in the other the premises strongly undermine the same conclusion.

In order to try to solve this sort of problem, Hempel proposed his requirement of maximal
specificity (RMS). It can be explained as follows. Let s be the conjunction of the premises of
the argument and k& the conjunction of all statements accepted at the given time (called
knowledge situation). Then, according to Hempel, “to be rationally acceptable” in that
knowledge situation the explanation must meet the following condition: If s [k implies that
b belongs to a class Fy, and that F, is a subclass of F, then s [Jk must also imply a statement
specifying the statistical probability of G in Fy, say

P(G,F)=r

Here, r’ must equal r unless the probability statement just cited is a theorem of mathematical
probability theory.’

The RMS intends basically to prevent that the property or class F to be used in the
explanation of Gb has a subclass whose relative frequency of Gs is different from P(G,F). In
order to explain Gb through Fb and a statistical law such as P(G, F) = 0.9, we need to be sure
that, for all sets F;UF such that F;b, the relative frequency of Gs among F;s is the same as
that among Fs, that is to say, P(G, F;) = 0.9. In other words, what the RMS states is that, in
order to be used in an explanation, the class F must be an homogeneous one with respect to
G.

3. The Problems with Hempel’s Approach

The RMS was proposed of course because of I-S model’s inability to solve the problem
of ambiguities. Since it allows the appearance of ambiguities and gives no adequate treatment
for them, without RMS the I-S model is simply useless as a model of intra-theoretical
scientific inferences. But we can wonder: Is the situation different with the RMS?

First of all, in its new version the I-S model allows us to classify arguments as authentic
scientific inferences able to be used for explaining or for predicting singular facts only if they
satisfy the RMS. It is not difficult to see that this restriction is too strong to be satisfied in

3 Hempel (1965), pg. 400. For the sake of uniformity we are not using here Hempel’s original notation.



practical circumstances. Suppose that we know that most streptococcus infections clear up
quickly when treated with penicillin, but we do not know whether this statistical law is
applicable to all kinds of streptococcus bacillus taken separately (that is, we do not know if
the class in question is a homogeneous one). Because of this incompleteness of our
knowledge, we are not entitled to use argument (1) to explain (or predict) the fact that John
Jones had (or will have) a quick recovery. Since when making scientific prediction, for
example, we have nothing but imprecise and incomplete knowledge, the degree of knowledge
required by the RMS is clearly incompatible with actual scientific practice. In other words,
the I-S model imposes a restriction that, due to the very nature of the circumstances in which
we perform intra-theoretical scientific inferences, we are not able to satisfy.*

Secondly, the only cases that the RMS succeeds in solving are those that involve class
specificity. In other words, the only kind of ambiguity that the RMS prevents consists of that
that comes from a conflict arising inside of a certain class with one of its subclasses. Suppose
that John Jones has contracted HIV. As such, the probability of his quick recovery (from any
kind of infection) will be low. But given that he took penicillin and that most streptococcus
infections clear up quickly when treated with penicillin, we will still have the conclusion that
he will recover quickly. Thus an ambiguity will arise from this situation. However, as the
class of HIV infected people who have an infection does not belong to the class of individuals
having a streptococcus infection which was treated with penicillin (and nor vice-versa), the
RMS will not be able to solve the conflict. To sum up, when the ambiguity comes from two
classes such that no one of them belongs to the other one, the RMS will fail in his task of
preventing ambiguities.

Thirdly, sometimes the policy of preventing all kinds of contradictions may not be the
best one. Suppose that the antibiotic that John Jones used in his treatment belongs to a
recently developed kind of antibiotic that its creators guarantee to cure even the known
penicillin-resistant infection. The initial statistics showed a 90% of successful cases. Even
though this result cannot be considered as definitive (due to the always-small number of cases
considered in initial tests), it must be taken into account. Now, given argument (2), the same
contradiction will arise. But here we do not know yet which of the two ‘laws’ has priority
over the other. Maybe the penicillin-resistant bacillus will prove to be resistant even to the
new antibiotic or maybe not. Anyway, if we reject the contradiction as the I-S model does
and do not allow the use of these inferences, we will loss a possibly relevant part of the total
set of information that could be useful or even necessary for other inferences.

4. The Logic of Intra-Theoretical Scientific Reasoning

Compared to the traditional probabilistic-statistical view of non-deductive intra-
theoretical scientific inferences, our proposal’s main shift can be summarized as follows.
First and most importantly, we are proposing to represent the non-deductive intra-theoretical
scientific reasoning through not a quantitative notion, but through the qualitative concept of
plausibility. Secondly, with the help of this concept we provide a nonmonotonic inferential
mechanism through which non-deductive scientific inferences can be represented. Thirdly, in
order to prevent the appearance of ambiguities we provide in our formalism a mechanism by
which exceptions of laws can be represented. This mechanism has mainly two advantages
over Hempel’s RMS: it can prevent the class specificity ambiguities without rejecting both
arguments (as Hempel’s does) and can also treat properly those cases of ambiguity that do
not involve class specificity. Finally, in order to consider the cases where the ambiguity is

* One can object that scientific theories actually stipulate ideal universal generalizations that need not
necessarily be connected to pragmatic-epistemic considerations. To answer to this objection it suffices to
remember that in order to predict or explain singular facts we need the so-called auxiliary hypotheses or initial
conditions which do depend on epistemological aspects



due to the very nature of the knowledge to be formalized and, as such, cannot be prevented,
we supply a paraconsistent mechanism by which certain types of ambiguities can be tolerated
without trivializing the set of premises. Consequently, even in the presence of contradictions
we can make use of all information contained in the set of premises and keep reasoning
without concluding everything from it.

The logical system that we propose to use to formalize the intra-theoretical scientific
inferences is a modified version of the logics introduced in Pequeno & Buchsbaum (1991)
and further developed in various others works.” This system consists basically of two
different logics connected to each other in a very important way.

First of all, there is a nonmonotonic logic (called Inconsistent Default Logic or IDL) that
allows for the performance of nonmonotonic inferences. The conclusions of these
nonmonotonic inferences can be marked with the modal operator of plausibility ?, where a?
means ‘d is plausible.” In this way, differently from the traditional nonmonotonic logics, IDL
is able to distinguish refutable formulae obtained though nonmonotonic inferences from non-
refutable ones.

Nonmonotonic inferences can be performed with the help of the ‘unless’ connector [1. O
[0 B, or ‘a unless [3’, means that the formula O can be used in any inferential chain unless [ is
one of the conclusions obtained from the set of formulae in question. The nonmonotonicity
comes from the fact that, if after having concluded a from a [ B some modification in the set
of formulae makes [3 a valid conclusion, we are not entitled to use o [J 3 to infer a any
longer.

The formula a O 3 can be thought of as representing a kind of typicality where O is the
fact that typically occurs and [ is the exception to this occurrence. If we are to represent non-
universal scientific laws such as statistical ones, for example, this non-universality could be
represented by the following schema:

(a-p20 ¢

This formula states that 3?7 can be inferred from a unless the exception, ¢, holds. The symbol
? in this case indicates that 3 is not a certain conclusion, but a plausible one, for if later ¢
becomes a valid conclusion, 3? cannot be inferred any longer.

The utility of ?, however, is not limited to a mere monotonic-nonmonotonic distinguisher.
It actually links the two notions of nonmonotonicity and paraconsistency by providing a way
of distinguishing those formulae to which the non-contradiction principle can be applied from
those to which it cannot.

In virtue of the domains in which the nonmonotonicity is required, namely the ones where
the knowledge to be represented is incomplete an imprecise, the appearance of contradictions
is practically an inevitable phenomenon. If we do like it is suggested here and distinguish
certain formulae from refutable ones, we will have basically two kinds of contradictions or
ambiguities: strong contradictions such as o [J -, and weak contradictions such as a? U
(—0)?. While it is reasonable not to allow the first kind of contradiction, we can conceptually
admit the truthfulness of sentences such as a? [ (-a)?. But this tolerance with respect to
weak contradictions is much more than a mere conceptual possibility. Since that one of the
parts of the weak contradiction (0? or —0?) can be defeated later, it is actually extremely
desirable to keep reasoning even with a so-called contradiction. But since we do not want to
have every sentence inferred from such kind of contradiction, we need something like a
paraconsistent mechanism through which we could be able to reason in the presence of

> For a good exposition of Pequeno’s logics of plausibility see Martins (1998).



contradictions without trivializing the theory. This mechanism is the second component of
our logical system, called Logic of Epistemic Inconsistency or, in short, LEL

The logic LEI is the monotonic and paraconsistent component that makes the reasoning
about the formulae obtained through the nonmonotonic logic IDL possible. It originally was
presented through an axiomatic and semantic formulation having its soundness and
completeness proved. Below it is showed some important axioms of LEI concerning the
plausibility operator ?: (Latin letters represent exclusively ?-free formulae)

(@ - B) - (@ - =B) - -x)
a - a?

a?? - a?

(a-PB)? - (a? - B?)

(~0)? o =(0?)

The first axiom schema, which is a weaker version of the reduction ad absurdum axiom,
is the key of LEI’s paraconsistency. In classical logic, it is the reduction ad absurdum axiom
what makes possible that from a contradiction we deduce everything. Here however, since (O
- B) - (@ - =B) - =0Q) can be used only if B is a ?-free formula, it is not possible to
make the reduction ad absurdum from weak contradictions. In other words, from a? [ (-0 )?
it does not follow the trivialization of the theory. Concerning strong contradictions, however,
the reduction ad absurdum axiom can be used exactly in the same way as in classical logic.
Thus, for plausible formulae LEI behaves paraconsistently, but for ?-free formulae it behaves
classically.®

LED’s language does not include the operator [I. It consists basically of propositional
logic’s language in addition to the operator ?. In its turn, IDL’s formulae a [J (3 are such that
a and (3 belong both to LEI’s language.

With the help of the monotonic inferential relation [, provided by LEI we can formally
define the nonmonotonic inferential relation of IDL. Instead of being a relation between a set
of formulae and a formula, IDL’s inferential relation has as its parameters a formula and what
is called an IDL-theory. An IDL-theory is a pair <W,D> where W is a set of formulae
belonging to LEI’s language and D is a set of closed [l-formulae. The set of all
(nonmonotonic) conclusions obtained through an IDL-theory is called the extension of this
theory. Let <W, D> be an IDL-theory and S be any set of formulae. ['(S) is the smallest set
that satisfy the following conditions:

®H  WOLES);
(i) IfIr(S) 2@ then @I I'(S);
(i) Ifa OB 0D and BOS, then all (S)
A set of formulae E is an extension of <W,D> iff ['(E)=E.’

An equivalent definition of the notion of IDL extension can be done as follows. Given the
IDL-theory <W,D>, consider the sequence of sets of formulae S, S;, S,, ... and S such that

So=W,S= Di;O Si, and Si4; = S; O {a: a0 D and BOTh«S)}. The extension of <W,D> is

the set of formulae E such that E = Th«S), where Th«(S) is the set of all formulae inferred
from A thought LEI’s inferential relation [-.

% Actually, in LEI all principles of classical logic are respected by ?-free formulae.

7 Despite the terminology used here, in some cases an IDL-theory can have more than one extension. Thus,
properly speaking it is not correct to speak about the set of conclusions of an IDL-theory, or even about the
inferential relation of IDL as a relation between a formula and an IDL-theory. We do find however that the use
of this terms is more adequate for a summarised presentation like this



5. Inductive Ambiguities: The Solution

As Hempel’s explanatory ambiguities show, the appearance of ambiguities is an
inevitable phenomenon when we deal with non-deductive inferences.® Surprisingly enough,
all cases of inductive ambiguities identified by Hempel are not due to this suggested
connection between ambiguity and induction, but actually to the incapacity of his
probabilistic approach to represent properly the situations in question. In this section we will
show how the examples that Hempel uses to expose the problem of inductive ambiguity can
be easily solved by the approach that we are proposing here.

Consider again John Jones’s example. The situation exposed in section 2 can be
formalized in our logic as follows:

(3) ((Fx OHx) - Gx?) 0 (=Gx OJx)
(4) Fb OHb

Here (3) is a formula schema that says that if someone has a streptococcus infection and was
treated with penicillin, then it is plausible that it will have a quick recovery unless it is
verified that the quick recovery will not be the case or that John Jones’s streptococcus is a
penicillin resistant one.” (4) states that John Jones has a streptococcus infection and that he
took penicillin. Given W = {Fb 0 Hb} and D = {((Fb ' Hb) —» Gb?) [J (-Gb [IJb)} as the
IDL-theory, we have that the extension of <W,D> is E = Thy({Fb [JHb, (Fb L1Hb) —» Gb?}).
By using modus ponens together with the two members of the set E we can easily see that
Gb?LE.

Suppose now that we got the new information that John Jones’s streptococcus is a
penicillin resistant one. We represent this by the following formula:

(4’) FbOHb OJb

Like in Hempel’s formalism, if someone is infected with a penicillin-resistant bacillus, it
is not plausible that he will have a quick recovery after the treatment of penicillin (unless we
know that he will recover quickly). This can be represented by the following schema of
formula:

(5) ((Fx OHx UJx) - =Gx?) U Gx

Given W’ = {Fb UHb UJJb} and D’=D U {(Fb UHb UJb) - ~Gb?) U Gb} as our new
IDL-theory, we have that the extension of <W’,D’>is E’ = Thy({ Fb JHb [1Jb, (Fb I Hb U
Jb) —» = Gb?}. By the same procedure we can conclude that - Gb?[E’.

Since in Hempel’s approach there is no connection between laws (1) and (2), the
conclusion of = Gb has no effect on the old conclusion Gb. Here however it is being
represented the priority that we know law (5) must have over law (3). The clauses Jx in the
U-right side of (3) and Jx in the — -left side of (5) taken together mean that if (5) can be used
for inferring, for example = Gb?, (3) cannot be used for inferring Gb?. So, if after using law
(3) we get new information that enable us to use law (5), since in the light of the new state of
knowledge law (3)’s utilization is not possible, we have to give up the previous conclusion
got from this law.

¥ Before presenting his I-S model and the problem of explanatory ambiguity, Hempel was aware of the
connection between inductive reasoning and inconsistencies. See his “inductive Inconsistencies”, reprinted as
section 2 of Hempel (1965).

? In the examples given here we are using the same formulas to represent both cases of explanation and
prediction. Since the logical language does not have future operators, the setting of the context (whether
explanation or prediction) is being made in the explication of the formula.



Turning back to John Jones example, since (- Gb [ Jb)LIE’, we are no longer entitled to
infer (Fb O Hb) — Gb? from (3) and, consequently, cannot infer Gb? any more. The only
plausible fact that we can conclude from (3) and (5) is =Gb?. As such, in contrast to
Hempel’s approach, we do not have the undesirable consequence that it is plausible (or in
Hempel’s approach, high probable) that John will quickly recover and that it is plausible that
he will not.

As it was said, in this specific case we know that law (5) has a kind of priority over law
(3), in the sense that if (5) holds, (3) does not hold. Like in Section 3, suppose now that the
antibiotic that John Jones used in his treatment belongs to a recently developed kind of
antibiotic that its creators guarantee to cure even the known penicillin-resistant infection. The
initial statistics showed a 90% of successful cases but due to the always-small number of
initial cases, this result cannot be considered as definitive. Even so, we can set up the
following tentative law:

(6) ((Fx OHx) - Gx?) U -Gx,

where H’ stands for administration of the new kind of antibiotic. To complete this new
example we have the two following formulae:

(4’) Fo OH’b OJb
(7) x(Hx - Hx)

Given W’ = { Fb UH’b UUJb, x(H’x - Hx)} and D’= {((Fb U Hb I Jb) - ~Gb?) Ul
Gb, (Fb OH’b) - Gb?) U = Gb,} (laws (5) and (6)) as our new IDL-theory, we have that
the extension of <W”’,D’’>is E> = Th«{ Fb OH’b OJb, (Fb OHb OJb) - =Gb?) O Gb ,
((Fb OH’b) —» Gb?) O ~Gb}. Clearly Gb?, ~Gb? [JE”".

In this case, we do not know which of the two ‘laws’ has priority over the other. Maybe
the penicillin-resistant bacillus will prove to be resistant even to the new antibiotic or maybe
not. Instead of rejecting both conclusions, as I-S model with its RMS would do, we defend
that a better solution is to keep reasoning even in the presence of such ambiguity, but without
allowing that we deduce everything from it. Formally this is possible because of the
restriction imposed by the already shown LEI’s axiom of non-contradiction. If a modification
that resolves the conflict is made in the set of facts (a change in (5) representing the definitive
success of the new kind of penicillin, for example) the IDL’s nonmonotonic inferential
mechanism will update the extension and exclude one of the two contradictory conclusions.

Finally, the HIV example can be easily solved in the following way.

(3’) ((Fx OHx) - Gx?) O (-Gx U Ax)
®) ((AxUIx) - =Gx?) U0 Gx

9) x(Fx - Ix)

(10) Ab UHb OFb

where A stands for having contracted HIV and I for having an infection. The solution here is
similar to our first example. Since (7) has priority over (3°), we will be able to conclude only
- Gb? and consequently the ambiguity will not arise.

6. Conclusion

My main objective in this paper was to show some of the promising advantages of a
qualitative approach to the intra-theoretical scientific inferences. By analyzing Hempel’s I-S
model, we intended to show the weaknesses and unsolved problems of the best-developed
formalization of the deductive-probabilistic view of intra-theoretical scientific inferences. By



presenting a logical system of plausibility, we showed how a qualitative approach could solve
the main problems presented by Hempel’s model when considered as a model for
representing intra-theoretical scientific inferences.

Besides the use of the qualitative concept of plausibility, our solution to the problem of
inductive ambiguities emphasized two main points. The first one is related to use of the
notion of exception. Since this notion is a stronger type of specificity, it showed to be able to
solve the class specificity cases of ambiguities analyzed by Hempel as well as other cases that
his model was not able to solve. Secondly, since we find the rejection of arguments and the
consequent loss of information a weakness (and, as we hope to have showed, an unnecessary
approach), we do not follow Hempel’s approach of rejecting contradictory arguments. By the
use of the exception mechanism it was possible to accept the arguments rejected by Hempel’s
RMS and at the same time to prevent their contradictory conclusions. In the cases where there
1s no way to prevent the ambiguity, that is, when there is a real “two-all draw”, our approach
allows for a paraconsistent treatment that accepts the ambiguity and consequently prevents
the rejection of arguments and the loss of information. While elegantly solving the cases that
Hempel’s model was not able to do, our solution simply keeps the contradictions and
paraconsistently allows further inferences upon them. Since the problem of ambiguities was
solved without imposing, like Hempel’s RMS does, a “quasi-omniscient” requirement upon
our weak ability to know, at first glance our approach seems to be useful in practical
applications of intra-theoretical scientific inferences.
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