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Abstract We propose a new formal model of cog-
nitive structures and offer a first analysis of their
mathematical complexity features. The structures
we consider should have response-ability in all —
but only in— the situations they experience. There-
fore they have to be coherent, but not necessarily
complete. Our understanding of knowledge is con-
structivistic and thus ignores some of the assump-
tions that characterise logical approaches. Instead,
it vindicates structural economy; not only because
of pragmatic reasons, but as a defining attribute of
cognition. Then, mathematical complexity theory
permits us to conclude that sometimes cognition is
impossible. That —if P 6= NP— there is no effi-
cient computational way to decide the existence of a
structure that responds to an extensionally given set
of experiences. Nonetheless, mathematics brings
good news, when the set of experiences is already
given in a comprehensive manner: There is a com-
putational algorithm that, given any other compre-
hension, subexponentially decides if this second one
responds to all situations the first is able to ma-
nage.
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1 Basics

Knowledge is, in our view, a cognitive struc-
ture G that articulates a coherent, responsible
and economic collection of structural instances.
Lets be more precise:
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We understand that the —perceptual, not
necessarily real— world Z, which the cogni-
tion G points at, is a finite but large class of
situational instances; and that Z is (partially)
ordered according to a given, universal com-
paring relation v. So, (Z,v) is a poset [1]

Given a situation Z ∈ Z, the cognitive struc-
ture G responds YES, if it has an affirming
V ∈ Z such that V v Z; it responds NO, if it
holds a negating W ∈ Z such that Z vW ; and
otherwise it is not able to respond. So we are
only considering categoric knowledge that clas-
sifies situations into essentially two categories,
according to the structural way of being of this
body of knowledge. And we are assuming that
G = (H,J ); where H,J ⊆ Z are the collec-
tions of affirming and negating structural in-
stances, respectively; i.e. are the elements of G
that enable its response-ability.

Such a cognitive structure G does not only
classify or decide its situational answers. Its
responses are not mere linguistic —YES, NO—
utterances. Our main issue is not the logos —or
its logical formalisation. We understand that
the considered speech-acts can only take place
when a structural commitment enables them,
i.e. when the cognitive structure assumes the
responsibility for its responses.

Therefore, since the structure is the main is-
sue, we understand that the considered cogni-
tive structures (H,J ) also have to be coherent
—not in the sense of [2], although we appre-
ciate that author’s epistemology—, i.e. they
have to be such that ∀(V,W ) ∈ H×J , V 6vW .
This is because the members of such a pair have
opposed response faculties: If V vW would be
the case, then V would demand the affirmation



of W ; and at the same time, W would request
the negation of V . So we have to assume that
such structural incoherences would tend to an-
nihilate at least one of the members of each in-
coherent pair; and thus reestablish coherence.
So, because of its coherent way of being and
the transitivity of v, such a cognitive struc-
ture will never contradict itself, respond YES
and NO in the same situation Z ∈ Z.

But it may well be that G is not able to
respond, neither with YES nor with NO, i.e.
that the structure holds no response-ability for
the given situation Z ∈ Z —so one could link
our cognition model to three-valued logics [3].
The reflexivity of v only guarantees that if the
situation matches a structural instance, then
G will respond according to that coincidence.
And the antisymmetry of v only allows to say
that ∀Z,Z ′ ∈ Z, if Z 6= Z ′, then one can con-
ceive a cognitive structure that categorically
distinguishes these two situations; responding
YES to one of the situations and NO to the
other one.

In fact we shall not necessarily expect our
cognitive structure G to be complete, i.e. to
respond to all Z ∈ Z. Such special cases will
mainly have a theoretical interest —see sec-
tion 3. In general, we shall only require of our
knowledge, to prove response-ability in front of
its experience Z̃ ⊆ Z, i.e. a subset of situatio-
nal instances, we assume to be given, either in
an extensive or a comprehensive manner, as we
shall comment in more details later —sections
2 and 3 respectively. But in any case, the ex-
perience size |Z̃| ∈ N will typically be a large
natural number, compared to the structure size
that the cognition can attain without violating
the economy we expect of any body of know-
ledge.

We do not expect of knowledge to be true, or
represent the features of its experiences. Our
epistemology is essentially constructivistic —
somehow in the sense of [4]—, so we do not
try to seize the reality. We expect coherent re-
sponsibility, as already explained. But we also
understand that a structure G can only be con-
sidered to articulate knowledge if it is economic.
I.e. if it not only is effectively memorisable, but

also responds efficiently, because any given si-
tuation Z ∈ Z, can efficiently be compared to
all the structures instances.

So in fact we are asking of our cognitive
structures to have the basic characteristics one
usually expects of scientific theories that are
shaped to respond to all hypothesis a certain
research area recurrently presents. In such a
theoretic world, instances correspond to hy-
potheses, and Z v Z ′ would mean that Z is
at least as general as Z ′. Then the acceptance
of Z demands the affirmation of Z ′; and the
rejection of Z ′ requests the negation of Z.

However we do not expect from these theo-
ries to be logic —the difference is formally dis-
cussed in the Appendix 5.4. They are only co-
herent, not potentially complete. Because they
make no use of a universal logical negation, but
define their own YES, NO categories. This is
a pragmatic attitude that naturally demands
economy.

Here, simplifying, we shall understand that
G = (H,J ) is economic, if its size |G| :=
|H| + |J | ∈ N is a small number. But of
course we shall only demand of our cognitive
structures to be small, compared with the large
extension of experiences they should respond
to. We are interested in ways to comprehend
large classes of experiences with small cognitive
structures. Adopting the standards of mathe-
matical complexity theory [5], we expect that
the structural sizes of the considered cogni-
tions, are bounded by an essentially logarith-
mic function of the experience extensions they
comprehend.

Remember that the size of the usual po-
sitional cognition —notation— of a natural
number is essentially a logarithm of that num-
ber.

2 Construction

If economy were not requested, solutions G
would be easy to construct: Simply start with
G := (∅, ∅) and expose this structure to all
Z ∈ Z̃, one after the other: If Z is not re-
sponded by the actual, enlarged structure G,



integrate Z to H or J , as you wish. But even
if you then eliminate all redundancy, dismissing
the structural instances that are responded by
other ones —of the same functionality—, ty-
pically the size of G will grow too much, to be
bounded by an essentially logarithmic function
of the number of experiences. In some cases,
such non-economic structures are easy to im-
prove by replacing subsets of H or J by —
maybe not experienced— Z ∈ Z that respond
to all the structural instances of the subset
they compress. But even then, a comprehen-
sive, economic compression of G, is normally
not easy to attain:

We understand that usually the world Z
gathers a subset of situational instances of a
universe (Z̄,v), and that these are precisely
the instances that are not responded by a
given, small constitutional structure Ḡ. Then
our interest focuses on economic, coherent,
Z̃-responsible, Ḡ-complements G = (H,J ).
Where complementation requires H,J ⊆ Z;
i.e. a condition that can equivalently be stated
in terms of Ḡ, in the following natural way: G
has to be coherent with the constitutional Ḡ,
i.e. (H̄,J ) and (H, J̄ ) should be coherent; and
G has to be constitutionally irredundant, i.e.
∀V ∈ H, 6 ∃V̄ ∈ H̄ with V̄ v V , and ∀W ∈ J ,
6 ∃W̄ ∈ J̄ with W v W̄ .

To give another example of a universe where
our response-ability concepts may be of inte-
rest, imagine that Ḡ yields a formal model of
the given, fixed legal constitution of a coun-
try, and that we want to complement this
constitution with a corpus of laws G that is
able to settle all legal —constitutionally not
decided— questions that the country’s praxis
Z̃ presents. Then, constitutional coherence and
irredundancy condemn laws to be wordy.

If the order v of the universe Z̄ were simple
—i.e. total, as would be the case if Z̄ is the set
of natural numbers—, then the world Z would
be an interval of Z̄. And since Z is finite, it
would contain its least element Z̆ and its great-
est element Ẑ. So Z could be comprehended by
({Z̆}, ∅) or by (∅, {Ẑ}).

But if the order is only partial, then the
world (Z,v) is economically characterisable as

the subset of Z̄ that Ḡ ignores. But this is
not the responsible characterisation our under-
standing of cognition demands. Note that if
(Z̄,v) is a lattice with meet-operator u and
join-operator t, Z typically is not a lattice,
although it has some similar local properties.

Boolean lattices are extremely partial and at
the same time widely used models —maybe
even more than integer numbers. Therefore
we shall concentrate on them. From now on
we shall assume that E is a given finite set of
boolean variables, and that the universe Z̄ is
the class of all subsets of E. This means that
Z̄ is a distributive lattice, and that the com-
plement operator ¬ is well defined [1].

A first result proves that it is not always pos-
sible to comprehend a large number of experi-
ences by a small cognitive structure —see the
Appendix 5.1 for a counterexample. So in these
cases, comprehension of Z̃ is —in our sense—
impossible.

But, given any E, Ḡ, Z̃, is there at least
a way to decide the existence of an economic
and coherent Ḡ-complement G that responds to
all Z̃? If economy of G means |G| ≤ κ, for a
given bound κ ∈ N , then the following result
proves that there is no polynomial algorithm
able to decide this complementation problem
—provided that, as mathematical complexity
theory tends to indicate, the class NP is larger
than the class P of decision problems that can
be solved with a polynomially bounded com-
putational effort.

Theorem 1:1 The decision problem posed by
the complementation issue, is NP-complete.

We shall not give the mathematical proof
here, but develop it in the Appendix 5.5.

This result indicates that the comprehension
issue —not only the construction problem, even
the associated existence problem— is a very
complex one, that it is intractable: If Z̃ is given
as a mere extension of situational experiences,
then mathematical complexity theory does not
know an efficient computational way to decide
the structural comprehensibility issue. So we

1The mentioned counterexample, as well as this
Theorem 1, are mainly due to Jean-Marie Droz, student
of mathematics at the ETH of Zurich, Switzerland.



have to conclude that there is a computatio-
nally unsurmountable complexity gap between
extension and comprehension of the experience.

This is worse than expected: We know that
every natural number has an economic com-
prehension: its positional notation. So, if the
natural number is given in an extensive way,
to derive its comprehension, one would have to
count the dots of the given extension, i.e. exe-
cute a process that clearly would demand an
effort that can not be bounded by a polynom
in the size of the comprehension.

But in our case, the needed computing effort
cannot even be bounded by a polynom in the
size of the extension —see the Appendix 5.5.

3 Comparison

But, what if Z̃ is already given in a compre-
hensive manner? I.e. if an economic coherent
Ḡ-complement G̃ is given, such that Z̃ is the
subset of instances of Z̄ that are not responded
by Ḡ, but by G̃?

Then there may be no interest to construct
another complement G. This is unless one has
reasons to be dissatisfied by the responses G̃
gives and looks for an alternative structure
that also responds —maybe differently— to
the problematic experiences.

Therefore, if a second economic and cohe-
rent structure G is proposed, it is often of great
interest to be able to decide the following com-
paring question: Does G also respond to all Z̃?
If so, we shall say —abbreviating— that G re-
sponds to G̃.

Given the positional notations of two natu-
ral numbers, one may want to know if the sec-
ond one is at least as large as the first. This
can of course be decided with a small compu-
tational effort that is essentially proportional
to the sum of the sizes of the two positional
comprehension.

In our responsibility case, matters are not
that clear. Let us first note that G responds to
G̃ iff Ḡ ∪ G responds to all instances responded
by Ḡ∪G̃. Therefore we may as well assume that
Ḡ = (∅, ∅). This allows a result that reminds

propositional logics, where the logical conse-
quence problem can be amained to the satisfia-
bility problem: We can polynomially reduce our
response-ability comparing problem to the fol-
lowing universality problem: Given a coherent
structure G′, does it respond to all instances of
Z̄?

Theorem 2: Given two structures G, G̃ —not
necessarily coherent ones—, G responds to G̃,
iff: ∀Ṽ ∈ H̃,
({V u ¬Ṽ ;V ∈ H}, {W ∈ J ; Ṽ vW}) is com-
plete, and ∀W̃ ∈ J̃ ,
({V ∈ H;V v W̃}, {W t ¬W̃ ;W ∈ J }) is
complete.
Moreover, if G is coherent, then all these de-
rived structures, generated by G̃, will also be
coherent.
So, the considered response-ability problem is
in P iff the considered universality problem is
in P —for a proof, see the Appendix 5.2.

This Theorem is specially interesting, be-
cause the time-complexity of the universa-
lity problem has presented a surprise: Un-
like the completeness problem —see the Ap-
pendix 5.3— and the satisfiability problem, the
computational effort needed to decide the uni-
versality problem has been [6] bounded by a
subexponential function of the size of G. So
there is hope for polynomiality, although ma-
thematical complexity theory has not yet been
able to attain that result.

4 Conclusions

At first sight, our knowledge paradigm seems
to be more primitive than the logical one: it
only insists on coherence and response-ability,
but ignores a priori completeness requirements
—see the Appendix 5.4 for a formal discussion
of this difference.

Nonetheless, since it explicitly demands
economy; our cognition paradigm turns out to
be as demanding as the logical one, when ex-
tensive situational experience should be articu-
lated in a comprehensive manner. But this NP-
completeness is a property that, in our opinion,
every deep knowledge should have, if it deserves



that status because it articulates more than a
mere account.

Nonetheless, alternative cognitions should
be efficiently comparable, not with the exten-
sive experience, but among them. So that com-
munication, discussion and construction are
promoted. And this is something that our
model of cognition seems to allow. Unlike the
classical logical consequence problem, that de-
finitely seems to be intractable, our responsibi-
lity comparison problem could turn out to be
tractable, as the result of [6] permits to hope.

In sum: The arguments that mathematical
complexity theory has been developing, prove
that our understanding of response-able cogni-
tion deserves a prolonged consideration.

5 Appendix

In this last section, we are going to develop
some mathematical results to support the of-
fered statements and prove the Theorems.
Since these results assume that Z̄ is a boolean
lattice, the complement ¬ is well defined; and,
given any J ⊆ Z̄, we may use the notation
¬J := {¬W ;W ∈ J }. To denote the least ele-
ment and the greatest element of the boolean
lattice Z̄, we will write ⊥ and > respectively.

5.1 Counterexample

Lemma 1: [6] Let G be complete —not ne-
cessarily coherent— and m ∈ N be such that
∀Y ∈ H ∪ ¬J , m ≤ |Y |. Then m ≤ log2(|G|).

Proof: With n := |E|, ∀Y ∈ H ∪ ¬J ,
|{Z ∈ Z̄;Y v Z}| ≤ 2n−m. Thus,
|G| · 2n−m ≥ 2n = |Z̄|; and therefore 2m ≤ |G|.

Let us now derive the counterexample we
promised in section 2. Given m ∈ N , let
E := {(a, b) ∈ A × B}, where A,B are sets
of m boolean variables. Thus, n = m2. Let
Ḡ := (H̄, J̄ ), where H̄ := {V a; a ∈ A}, ∀a ∈ A,
V a := {(a, b); b ∈ B}, ¬J̄ := {U b; b ∈ B},
∀b ∈ B, U b := {(a, b); a ∈ A}. Note that Ḡ
is coherent, that ∀a, a′ ∈ A, V a u V a′ = ⊥
and ∀b, b′ ∈ B, U b u U b′ = ⊥. Therefore, if a
structure G := (H,J ) is coherent with Ḡ, then
∀Y ∈ H ∪ ¬J , m ≤ |Y |. And thus, according

to Lemma 1, |G| ≥ 2m = (21/2)n; i.e. |G| grows
exponentially with n.

5.2 Proof of Theorem 2

Given Ṽ ∈ H̃, G responds to all Z ∈ Z̄ with
Ṽ v Z, iff it responds to all {Z t Ṽ ;Z ∈ Z̄},
i.e. iff for all Z ∈ Z̄, either ∃V ∈ H with
V u ¬Ṽ v Z, or ∃W ∈ J with Z v W and
Ṽ vW . The proof for the W̃ ∈ J̃ is similar.
Finally, if G is coherent, given any Ṽ ∈ H̃,
V ∈ H and W ∈ J with Ṽ vW , since
V uṼ vW , V u¬Ṽ vW would imply V vW ,
a contradiction.

5.3 Satisfiability of CNF

Here and in the next subsections, we shall
relate our paradigm to propositional logics,
to stress similarities and differences. Some
questions concerning conjunctive normal forms
[CNF] of propositional logics can be stated
equivalently in our terms.

A CNF is specified by a finite set X of
boolean variables and a finite set C of disjunc-
tive clauses of —negating or affirming— literals
of that variables. Let E be the set of all lite-
rals. For any x ∈ X, denote by x−, x+ ∈ E
the negating, respectively affirming literal of
the variable x ∈ X, define Dx := {x−, x+},
and let D := {Dx;x ∈ X}. So, a disjunctive
clause C ∈ C can be represented as an instance
C ∈ Z̄, such that ∀D ∈ D, D 6v C.

A valuation is a function that assigns one of
the two possible truth values to each variable
in X. So, if we call sub-valuations the Y ∈ Z̄,
such that ∀D ∈ D, D 6v Y , then the valuations
can be represented as sub-valuation Y , such
that ∀D ∈ D, D u Y 6= ⊥. A sub-valuation Y
satisfies a clause C ∈ C, iff C u Y 6= ⊥. And
it satisfies C —a given CNF—, iff it satisfies
all C ∈ C. Note that there exists a valuation
that satisfies C, iff there exist a sub-valuation
that satisfies C. Therefore C is satisfiable, iff,
defining H := C, J := ¬D and G := (H,J ), G
is not complete. Thus, the satisfiability prob-
lem of propositional logics can polynomially be
reduced to our completeness problem: given a



not necessarily coherent structure G, decide if
it responds to all Z̄. This proves:

Lemma 2: This completeness problem is NP-
complete.

Although note also that (C,¬D) usually will
not be coherent. So, Lemma 1 does not imply
that our universality problem —given a struc-
ture G, decide if it is coherent and complete—
is NP-complete. Such a conclusion would also
be very unprobable, considering the results
of [6].

5.4 Logical Consequence

Let us now discuss the logical consequence issue
in terms of our coherent responsibility struc-
tures. Given a CNF (X, C), assume that Ḡ =
(H̄, J̄ ) is a constitutional structure, such that
H̄ = C and ¬J̄ gathers a small subset of —
typical— sub-valuations that satisfy C. Then,
let Z ∈ Z̄ be a situational clause —i.e. such
that ∀D ∈ D, D 6v Z. If Z is responded by
H̄ —with YES—, then it is clearly a logical
consequence of C; since all sub-valuations that
satisfy C, will also satisfy Z. And if J̄ responds
—NO—, then evidently Z is not a logical con-
sequence of the given CNF. So, if our consti-
tutional structure Ḡ responds, its answers will
always be logical.

But Ḡ will typically not be able to respond
to all the situational clauses that may be of
interest. Then, logics would aboard its stan-
dard, usually very complex process of infer-
ences. Our paradigm instead, naturally envi-
sages the construction of a coherent and eco-
nomic Ḡ-complement G. Before that, it may
add D to H̄, and at the same time expand all
sub-valuations Y ∈ ¬J̄ to valuations. So that
they now not only satisfy C, but also cohere
with D. This, to respond and that way dismiss
all Z ∈ Z̄ that are not clauses, i.e to make sure
that the instances that will build the envisaged
G, have the form of clauses.

Nevertheless, this will not guarantee that
the constructed V ∈ H will turn out to be con-
sequences of C, as logics would expect. Because
there may well exist valuations Y that satisfy
all constitutional clauses of C but do not satis-

fy a constructed V . However, such valuations
cannot be structurally present, neither in the
constitutional ¬J̄ , nor in its complement ¬J ,
since this construction will have to cohere with
V .

This autonomy —this limitation to struc-
tural self-reference— is the main feature that
distinguishes our paradigm from universal lo-
gics. Therefore it is important to note that
the presence in ¬J of a valuation Y , can also
be an uncertain one: Because if W ∈ J , then
the coherence with D guarantees that ∀x ∈ X,
either x− or x+ ∈ ¬W . But ¬W may allow
more than one truth value for some variables
of X. Then the presence of such a ¬W only
restricts the clauses V ∈ H to be satisfiable
by at least one of the certain valuations that
W ∈ J permits.

Finally also note that such uncertainties di-
minish the response-abilities of the instances of
J . So, if G is to be economic, it may have to
approach certainty. This explains the proposed
Theorem 1, and permits the following:

5.5 Proof of Theorem 1

Lemma 3: Given G := (H,J ) and e ∈ E, if we
define G′ := (H′,J ′) such that H′ := H∪{{e}}
and J ′ := {W\{e};W ∈ J }, then
|G′| ≤ |G| + 1, G′ is coherent, and responds to
G.

Proof: The two first statements are evident.
If Z ∈ Z̄ is responded by G but not by H, then
it is responded by J ; and if Z is not responded
by {e} ∈ H′, then e 6∈ Z, so it is responded by
J ′.

Proof of Theorem 1: Given any CNF (X, C),
define E like we did above, and define H̄ :=
{Dt{e};D ∈ D, e 6∈ D}, J̄ := {⊥}, Z̃ := D∪C
and κ := |X|. Thus we get a specification of
our complementation (decision) problem. Its
size is |E| · (|Ḡ| + κ + |Z̃|); and is therefore
polynomially bounded by the size |X| · |C| of
the satisfiability problem.

Before we continue with the proof, note that
Theorem 1 holds even we are assuming that
the size of an instance of our complementation
problem is linear in κ. We make this assump-



tion because we understand that κ does not
only specify a natural number —that can be
codified by log2(κ) bits— but a register of size
|E| · κ, able to memorise a potential solution
G. Also note that Theorem 1 would still hold
if we would restrict the complementation prob-
lem to normal triples (E, Ḡ, κ), such that |E|
and |Ḡ|+κ —but not necessarily |Z̃|— are poly-
nomially related.

Given a valuation Y ∈ Z̄ that satisfies C,
if we define H := {{e}; e ∈ Y } and J := ∅,
the structure G has |G| = κ elements —no one
responded by Ḡ— and is a coherent structure
that evidently responds to all Z̃. So, any solu-
tion of the satisfiability problem yields a solu-
tion of our complementation problem.

Thus, to prove that the satisfiability prob-
lem can polynomially be reduced to our com-
plementation problem —and prove that our
problem is NP-complete—, it suffices to prove
that, whenever C is not explicitly unsatisfiable
—because either ⊥ ∈ C, or ∃x ∈ X with
{x−}, {x+} ∈ C—, then the existence of a solu-
tion G of the specified complementation prob-
lem, implies the existence of a valuation that
satisfies C. This is what we prove next.

Suppose, a solution G exists. Then there also
exists one, such that H ⊆ {{e}; e ∈ E}. Be-
cause coherence of (H, J̄ ) implies ⊥ 6∈ H, and
if ∃V ∈ H with |V | > 1, then, using Lemma
3, one can exchange such a V by any {e} with
e ∈ V , maintaining |G| ≤ κ, the coherence and
the response-ability of G. And since {e} is not
responded by Ḡ, the new G will also be a solu-
tion of our complementation problem.

Then there also exists a solution G that ful-
fils the condition of the last paragraph, and
is such that ∀x ∈ X, either {x−} ∈ H or
{x+} ∈ H. Since, if this condition would not
hold for a x ∈ X, then the response-ability
of G implies the existence of a W ∈ J , such
that Dx v W . Coherence of (H̄,J ) implies
Dx ∈ J . And, since we are assuming that C is
not explicitly unsatisfiable, ∃e ∈ Dx, such that
∀Z v Dx\{e}, Z 6∈ Z̃. So choose such a e,
enlarge H with {e} and remove Dx from J .
Lemma 3 guarantees that the new G will again
be a solution of our complementation problem.

Then there also exists a solution G that ful-
fils the conditions of the two last paragraphs,
and is such that∀x ∈ X, either {x−} 6∈ H or
{x+} 6∈ H. Because, since κ = |X|, otherwise
there would exist a x ∈ X that would violate
the condition of the last paragraph. Then we
may conclude that J = ∅; and that H specifies
a valuation Y v E that satisfies C.
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