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Abstract The present study is a sequel to [3] and
[5]. We further explore preservational properties of
a class of implicational connectives. The implica-
tional approach to preservation examines what hap-
pens when the implicational connective is required
to preserve various properties. We focus on a par-
ticular class of properties, called meta-valuational
properties, and the class of implicational connec-
tives required to preserve various dimensions of
these properties.
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1 A Preservationist approach

The core slogan of the preservationist approach
to logic is ‘find desirable properties of sentences
or sets of sentences and preserve them’.

Definition 1.1 The connective → preserves
properties of sentences. If → preserves P, and
α → β receives a designated value, then if α
has P, β has P.

We focus on a particular class of proper-
ties, called meta-valuational properties, and
the class of implicational connectives required
to preserve various dimensions of these proper-
ties. Meta-valuational properties form a hier-
archy of properties. The hierarchy begins with
a basic property which behaves like the stan-
dard valuation of classical propositional logic.
We begin by generalizing the preservationist
approach to implication from [3] and [5] to an
arbitrary binary connective and then evaluate

a class of implicational connectives according
to a criterion that we label the Nobel measure.

2 Preservationist Connectives

2.1 Atomic Sentences

Our approach is semantic. First, we describe
the semantics of the atomic sentences. Atomic
sentences, on this approach, are variables rang-
ing over a set, E, the set of semantic elements.
Let a, b, and c range over the elements of
E. The set of properties PE is the set of bi-
nary properties distinguished by the elements
of E. Pi ∈ PE is represented as a function
Pi : E → 2. Elements of E are called profile
vectors.

Definition 2.1 A profile vector is an ordered
list of 0’s and 1’s. Each place in the list repre-
sents a property. The leftmost place represents
the property P1 and the ith place, property Pi.
1 in the ith position signifies that the sentence
has the property Pi and 0 that the property is
absent.

The arity of a profile vector is |PE |. The
set E, then, is a collection of distinct profile
vectors of the same arity. We write Pi(a) =
1(0) to represent the fact that the property Pi

is present (absent) in a. D ⊆ E, is the set of
designated elements of E.

a ∈ D ⇔ P1(a) = 1

We call P1 the root property . P2 . . . Pn

are called meta-valuational properties. For
the purposes of the current application, these



are understood as a hierarchy of properties.
Rather than being understood as properties of
the sentence per se, they are taken as proper-
ties of the previous properties in the list. Thus,
P4 is a property of P3 etc. [for details see [5]].

If |E| < ω, then the connectives of the log-
ical system have finite characteristic matrices.
If |E| = 2n where the arity of the elements is
n, then E is said to be complete. Otherwise, E
is incomplete.

Example 2.2 Let PE = {P1, P2, P3},
and E = {111, 101, 100, 011, 010, 000}. D =
{111, 101, 100}. The arity of the profile vectors
is 3. E is incomplete, since |E| < 23. Adding
110 and 001 to E extends E to a complete el-
ement set, E+.

2.2 Binary Connectives

A binary connective ∗ for |PE | = n is a collec-
tion of n functions P ∗

1 . . . P
∗
n , P

∗
i : E × E → 2.

P ∗
i is the extension function for Pi, and is de-

fined as follows
P ∗

i (a ∗ b) = 1 iff
(f11((P1(a)), (P1(β))) = 1, . . .& . . .
fij((Pi(a)), (Pj(β))) = 1, . . .& . . .
fnn((Pn(a)), (Pn(β))) = 1)

where fij is any quantitative function.

2.2.1 Quantitative Functions

The quantitative functions, <, >, =, ≤, ≥,
min, max, and vac, are functions from 2 × 2
into 2. <, >, =, ≤, and ≥, are assigned 1 if the
corresponding relation holds, and 0 otherwise,
min and max are standard, and the vacuous
function, vac, is defined as follows:

∀x, y, vac(x, y) = 1

Let us call the set of quantitative functions
Q. Let P ′

i : P × P → Q. In other words, to
each pair from P×P, P ′

i assigns a function in
Q. We call P ′

i (Pj , Pk), fjk.

Definition 2.3 The property profile P ∗
i (a ∗ b)

is defined as,
P ∗

i (a ∗ b) = 1 if ∀j, k, fjk(a, b) = 1,
0 otherwise

We call a property profile a preservational pro-
file when i = 1. The rest of the profiles are
collectively called a non-alethic profile.

The function vac is used to relax the require-
ments of property profiles. In actual practice,
if for some i, j, fij = vac, we omit it from the
property profile.
f11 in the preservational profile determines

whether a connective is a conjunction, disjunc-
tion, implication, or equivalence.

Example 2.4 Let us consider an example of
a non-classical conjunction. Let our element
set, E, be a complete collection of binary pro-
file vectors. Let the preservational profile for
conjunction be
P1(a ∧ b) = 1 ⇔ min(P1(a), P1(b)) = 1
and P2(a) = P2(b).

This enables us to construct the root portion of
the conjunction matrix.

∧ 00 01 10 11
00 0 0 0 0
01 0 0 0 0
10 0 0 1 0
11 0 0 0 1

Now suppose we add a non-alethic profile :

P2(a ∧ b) = 1 ⇔ P2(a) = P2(b) = 1.

Then the completed matrix is

∧ 00 01 10 11
00 00 00 00 00
01 00 01 00 01
10 00 00 10 00
11 00 01 00 11

The conjunction is nothing like classical. The
conjunction could be false (non-designated) al-
though both conjuncts are true (designated).

2.3 Unary Connectives

A unary connective is a function ∗ : E → E.
A trivial unary connective is one for which
∀a ∈ E, ∗(a) = a. Every non-trivial unary con-
nective reverses some of the properties of some
of the elements.



Definition 2.5 A unary connective ∗ reverses
a property Pi relative to set E′ ⊆ E iff for all
a ∈ E′, P ∗

i (a) = |Pi(a) − 1|.

A unary connective ∗ is uniform, iff for every
property Pi that ∗ reverses, E′ = E. A unary
connective ∗ is a negation iff it reverses P1 and
classical if it reverses P1 only and is uniform.

3 Paradox-Tolerant Logic

In [3], Jennings and Johnston introduce
paradox-tolerant logic (hereafter PTL), the
first explicitly preservationist implicational
logic. PTL was designed to achieve implica-
tional paraconsistency by requiring the impli-
cation to preserve additional properties. The
implication preserves truth (i.e. designation)
and a property that the authors call fixity. To
represent this addition, the logic uses a com-
plete set of binary profile vectors as its seman-
tic base. An entry (a, b) in the implication ma-
trix receives a designated value iff both prop-
erties are preserved, that is P1(a) ≤ P1(b) and
P2(a) ≤ P2(b). The system uses matrices for
conjunction and disjunction, that, as chance
would have it, are isomorphic to the matri-
ces of Heyting’s intuitionist system when an
extra application of Jaśkowski’s Γ-function is
performed [see [2]]. The negation and disjunc-
tion are classical in the above described sense,
namely the only property negation reverses is
P1, and P1(a ∨ b) = max(P1(a), P1(b)). The
negation and disjunction are defined by the fol-
lowing matrices:

α ¬α
00 10
01 11
10 00
11 01

∨ 00 01 10 11
00 00 00 10 11
01 00 01 10 11
10 10 10 10 11
11 11 11 11 11

The other PL connectives are defined in the
standard way1 and are classical as well. In fact,
the matrices are characteristic for PL. The

1The negation is distinct from Heyting’s nega-
tion and such that disjunction and conjunction are
interdefinable.

main difference is in the implicational connec-
tive and the falsum constant, which are both
independent of the standard PL connectives:

→ 00 01 10 11
00 10 10 10 11
01 01 11 01 11
10 00 00 10 11
11 01 01 01 11

⊥
01

As we have already mentioned, PTL’s
main aim is implicational paraconsistency and
paradox-tolerance over implication. This no-
tion of implicational paraconsistency needs
some clarification. Ordinarily, a logic L is said
to be implicationally paraconsistent if it satis-
fies

∃α ∃β ��L (α → (¬α → β)) (1)

If this is the appropriate criterion, then PTL is
implicationally paraconsistent. In fact, many
additional suspicious PL implicational theo-
rems fail in PTL. To name a few interesting
ones,

⊥ → α

α → (α ∨ β)

(α ∧ β) → α

all fail. (For a more thorough list see [3]).
However, as we have elsewhere noted (see [5]),
higher order counterparts of some of these the-
orems hold in PTL. For instance, all of

⊥ → (⊥ → α)

¬α → (α → (¬α → β))

α → (α → (α → (α ∨ β)))

are theorems of PTL.
This reveals that §1 is rather feeble as a cri-

terion of implicational paraconsistency. There
is room for higher standards.

Definition 3.1 The implication-
negation fragment IN of a logic L is the set of
theorems of L that contain no connective other
than negation and implication.



Then a logic L is said to be properly implica-
tionally paraconsistent iff

∃α ∃β,∀d ∈ INL, d �= x→ (y → (((. . .→ β))))
(2)

where x and y range over {α,¬α}. Note that
§2 is weaker than

∃α, ∃β, {α,¬α} �� β. (3)

§2 could hold of L without §3 holding. In the
presence of modus ponens, the converse is false.

There is a sense, however, in which §1 and §2
are different ends of a spectrum. To explicate
the similarity of the two criteria we need the
notion of implicational detonation.

Definition 3.2 Relative to a logic L, a set Σ
implicationally detonates iff ∃d ∈ INL, d =
(x → (y → (z → (((. . . → β)))))) where x, y
and z range over elements of Σ, and β is an
arbitrary sentence. We call the sentence d an
implicational fuse.

This is a sense in which the implication of
PTL is an improvement over the material im-
plication, although given an inconsistent set
both implications are explosive: the theorems
driving explosions in PTL need deeper nest-
ings. From the point of view of this investiga-
tion, this need for an increase in nesting is a
centrally interesting feature of PTL. Further-
more, we can generalize this need for deeper
nesting into a paraconsistent measure. Accord-
ing to this measure, the deeper one has to nest
to drive an explosion from a given inconsistent
set, the more paraconsistent the logic is.

It seems obvious to us that even if some
contradictions are to be tolerated, it certainly
need not be the case that all contradictions
are. Even among the ones to be tolerated, if
any, some are to be more tolerated than others.
A natural way to capture this fact, is to impose
a partial ordering on the set of available con-
tradictions. The ordering may, for example,
represent complexity of the claims involved.
The simpler contradictions explode more read-
ily than the complex and involved ones. The

most complex ones, paradoxes, may be toler-
ated all together. The latter kind are the con-
tradictions that no one is able to resolve in a
satisfactory fashion. Some of them may be im-
possible to resolve, and others may simply be
impossible to resolve given the present state of
our knowledge.

4 Nobel Measure

The Nobel measure is a measure of how explo-
sive some set of sentences is in a given logic
L. The measure concerns the set INL, and
provides us with the minimally nested impli-
cational theorem required to detonate a given
explosive set. If the set is non-explosive then
the measure assigns it an arbitrarily high num-
ber. The measure depends on several notions,
the first one of which is the notion of depth of
consequence.

Definition 4.1 Depth of consequence is a
function C : Φ → Nat, where Φ is the set of
formulae of L. The function is defined recur-
sively as follows:

If α is not an implication sentence, C(α) = 0.
If α is an implicational sentence, and γ is the
consequent of α, then C(α) = 1 +C(γ). Thus,

C(α ∨ β) = 0
C(α → β) = 1
C(α → (β → γ)) = 2
C(α → (β → (γ → δ))) = 3, etc.

Definition 4.2 Fuse-measure. Let Σ be a set
of sentences, and L the logic generated by some
system S. Let α ∈ INL be Σ-detonating if
it is a fuse for Σ. Then the fuse-measure is
a function fS

Σ : INL → Nat,∞, such that
fS
Σ(α) = C(α), if α is Σ-detonating, ∞ oth-

erwise.

Definition 4.3 The Nobel measure is a func-
tion NS : ℘(Φ) →Nat,∞.

NS(Σ) = minfS
Σ(α).



Example 4.4
Material conditional-negation fragment of CL.
The shortest implicational fuse for {⊥} is

�CL ⊥ → β (4)

and, hence, NCL({⊥}) = 1.
If the set, however, is {α,¬α}, then the short-
est implicational fuse is

�CL α → (¬α → β) (5)

and, hence, NCL({α,¬α}) = 2.

PTL is an improvement over CL with regard
to the Nobel measure.
Neither §4 nor §5 are theorems of PTL.2 Hence,

NPTL({⊥}) > 1 &NPTL({α,¬α}) > 2.

The aim of the present study is to construct a
sequence of logics PTL0 . . . PTLn . . . such that
for any inconsistent set Σ,

NPTL0(Σ) ≤ NPTL1(Σ) ≤ . . .NPTLn(Σ) . . .

and for Σ = {⊥} or {α,¬α}

NPTL0(Σ) < NPTL1(Σ) < . . .NPTLn(Σ) . . .

5 PTLn Sequence

We want a partial ordering on the set of ele-
ments of the system. The ordering represents
complexity. Thus, α < β represents the fact
that β is more complex than α. What we mean
by complexity is purposefully left somewhat
vague. An easy move is to associate the com-
plexity of a claim with the time it would take a
computational device to ‘process’ it. We do not
make this move, although our main idea is not
entirely unrelated. On our (admittedly vague)
account, a sentence is more complex if it re-
quires deeper understanding of some aspect of
the world in order to be processed. What this
means is that, in most cases, claims the under-
standing of which depends upon understanding

2Nor is the obvious modification of §5, ¬α → (α →
β).

more of our theories will be more complex. Or,
as it is sometimes put, the more complex claims
are the ones that depend on more theory.

Each new logic in the sequence distinguishes
progressively more elements by their complex-
ity. A natural way to build the sequence
of logics capturing such a progression is to
use an isomorphism of the lattice ordering of
classical truth functions. Each logic in the
PTLn sequence is associated with the lat-
tice defined by �CL over the set of all n-ary
connectives.3 PTL0 is defined over the set of
all CL-constants, PTL1 over the set of unary
connectives, PTL2 over the set of binary con-
nectives, etc. α ≤ β ⇔ α �CL β. The arity of
profile vectors for PTLn is 2n.

We define negation, disjunction, implication
and countably many constants for the class of
lattices as follows:

Definition 5.1 Disjunction. If a �∈ D and b �∈
D then a ∨ b =
max{ c | c ≤ a& c ≤ b}. Let B : E → Nat
be a function assigning a corresponding natural
number to each of the elements. For example,
B(000) = 0 and B(110) = 6. If either a ∈ D
or b ∈ D then a ∨ b = B−1(max(B(a),B(b))).

Definition 5.2 Negation. If a ∈ D then ¬a =
max{ b �∈ D | b ≤ a}. If a �∈ D then ¬a =
min{ b ∈ D | a ≤ b}.

Definition 5.3 Implication. The preserva-
tional profile of implication is easily defined:

P1(a→ b) = 1 ⇔ a ≤ b

The issues involved in defining the non-
alethic profile add some complication. In [5],
we assign the non-alethic profile using a fairly
involved algorithm. Here, we sacrifice some of
the adherence to the original sequence of logics
for the sake of simplicity. The definition will
change some of the places in the implicational
matrix. Here is the matrix for PTL1. The
items marked with a star have been changed.
0 in the second place has been replaced by 1.

3This approach was suggested to us by D.K.
Johnston.



→ 00 01 10 11
00 10 11* 10 11
01 01 11 01 11
10 00 01* 10 11
11 01 01 01 11

It is important to note that the new se-
quence still provides the desired increase in the
Nobel measure from one logic to the next.

Let E/P1 be the restriction of the set of el-
ements to non-designative properties, that is,
the set of elements without the leftmost prop-
erty. Let B[E/P1] : E/P1 → Nat be a function
assigning to each element a ∈ E/P1 the corre-
sponding natural number.

Let a non-alethic quarter of a matrix be a
segment in which P1 of the antecedent and
the consequent are some fixed values x and y.
Then, corresponding to four possible values of
x and y—x = 0, y = 0; x = 0, y = 1; x =
1, y = 0; &x = 1, y = 1—there are four quar-
ters. (See the above table in which the four
quarters are emphasized differently.) For ev-
ery logic in the sequence, the four quarters are
identical in E/P1. Hence, defining the non-
alethic profile requires defining only one of the
quarters.

Let A and C stand for B[E/P1] of the an-
tecedent and the consequent respectively. Let
f(A,C) be a function assigning a value to the
implication. Then, if C < n,

A ≤ C ⇒ f(A,C) = A

A > C ⇒ f(A,C) = C + 1

If C = n,

A < C ⇒ f(A,C) = A+ 1

A = C ⇒ f(A,C) = n

The non-alethic profile is then assigned to im-
plication by B−1

Example 5.4 Quarters for PTL1 and PTL2.
As can be checked against the matrix above, the
PTL1 non-alethic quarter is

A\C 0 1
0 0 1
1 1 1

For PTL2, it is

A\C 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 1
1 1 1 1 1 1 1 1 2
2 1 2 2 2 2 2 2 3
3 1 2 3 3 3 3 3 4
4 1 2 3 4 4 4 4 5
5 1 2 3 4 5 5 5 6
6 1 2 3 4 5 6 6 7
7 1 2 3 4 5 6 7 7

Definition 5.5 Constants. Let < be a linear
ordering of E−D by B. Let m be the maximal
element on this ordering. Let F be the count-
able set of false constants {⊥,−1,−2,−3 . . .}.
Then, if f is the interpretation function,
f(⊥) = m, f(−1) = m − 1, f(−2) = m −
2 . . .∀n ≤ −m, f(n) = 0.

6 Syntax

A formal system of PTLn is the usual ordered
triple

S = 〈L, A, R〉
where L is a language, A is a set of axioms,
and R is a set of rules. As we will see shortly,
the only difference between various systems in
the PTLn sequence lies in the set A.
The language L of PTLn is an ordered triple

〈At, k, Φ〉

At is a denumerable set of propositional
variables, k the denumerable set of con-
stants F ∪ {¬, ∨, →, (, )} where F =
{⊥, −1, −2, −3, . . .} is a denumerable set of
false constants. The set Φ is the usual set of
formulae with the addition of the clause

F ⊆ Φ

R is a pair. Its only elements are (classi-
cal) modus ponens, and the rule of substitution.
The contents of A for various degrees is de-
termined by the strategy for the completeness
proof. In general, |APTLn | is |APTL0 |+ 3n+ 1.
That is, the cardinality of some set of axioms



for CL, together with an axiom for each meta-
valuational property for each of the three con-
nectives. There is an additional axiom for the
root property in the case of the implicational
connective.

6.1 An Approach to Completeness

We approach completeness from a literalist
point of view. Every semantic property has
its syntactic representative in the guise of the
above-mentioned set F of false constants. A
false constant, or a set of them, enables us to
express the presence or absence of a property
Pi. We can perform this kind of translation for
every property and then can use the syntac-
tic translation of property profiles as axioms
of the logic. The details are straightforward.
(For details see [5]).

7 Increasing Paraconsistency

Let ThPTLn be the logic of PTLn. Since for
all n the matrices of PTLn−1 are embedable
into the corresponding matrices of PTLn, it
is easily shown that ThPTLn ⊆ ThPTLn−1 . It
follows that for an arbitrary inconsistent set Σ,

NPTL0(Σ) ≤ NPTL1(Σ) ≤ . . .NPTLn(Σ) . . . .

Showing that for Σ = {⊥} or {α,¬α}

NPTL0(Σ) < NPTL1(Σ) < . . .NPTLn(Σ) . . .

is fairly straightforward. From the function
that assigns the non-alethic profile to impli-
cation, it can be discerned that B(⊥ → α) is
B[E/P1](α) + 1 if B[E/P1](α) < B[E/P1](⊥),
and B(¬⊥) otherwise. Thus, NPTLn(⊥) is
|EPTLn−DPTLn |. It is an easy exercise to show
that similar result holds for Σ = {α,¬α}.

An immediate consequence is that every
logic in the PTLn sequence is finitely impli-
cationally explosive. In other words, there are
finite m and l, m ≤ l such thatNPTLn({⊥}) =
m and NPTLn({α,¬α}) = l.

7.1 Intersection of PTLn Logics

Now, for certain purposes it may be desirable
to have a logic in which the Nobel measure for
both {⊥}, and {α,¬α} is ∞. There are two
known preservationist ways of achieving this
end. The first is to introduce profile vectors
of infinite arity. The second, arguably more
interesting, approach is to take the intersection
of all finite PTLn cases. That is,

PTLω = ∩{PTLn |n ∈ Nat }
An interesting open question in this line of re-
search is the question of finite axiomatization
for PTLω. The logic is decidable if it is axiom-
atizable, for every theorem that fails, fails on
some finite PTLn matrix. Since the logic is a
sublogic of CL, it would also be of interest to
see whether the implication-negation fragment
of the logic matches some known paraconsis-
tent sublogic of CL.
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