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Abstract. We examine logical systems with generalized
quantifiers, for expressing and reasoning about
assertions with 'generally'. The primary motivation is a
qualitative, rather than quantitative, approach to some
vague notions. Assertions and arguments involving
notions, such as 'generally', 'most', 'many', etc., occur
often in ordinary language and in some branches of
science. Filters can be used for capturing an intuitive
idea of 'generally'. This motivates the introduction of
an operator to express 'generalized' assertions whose
meaning is intended to be "belonging to a given filter
(of 'important' sets)". These ideas are incorporated in a
basic (unsorted) logic. Some interesting situations may
require assertions relative to several universes,
involving "most birds" and "most penguins" for
instance. This leads to our sorted framework for
reasoning about versions of 'generally' relative to
various universes.
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1 Introduction
We examine logical systems with generalized
quantifiers, for expressing and reasoning about
'generally'. Assertions and arguments involving
vague notions, such as 'generally', 'most', 'many',
etc., occur often both in ordinary language and in
some branches of science. The primary
motivation is a qualitative, rather than
quantitative, approach to such vague notions.

We wish to express assertions, such as "birds
'generally' fly", and reason about them in a formal
manner. One usually understands "birds
'generally' fly" as "all birds, but for a 'negligible'
set of exceptions, fly", which suggests the
paraphrases "most birds fly" or "the set of flying
birds is an 'important' set". To express such
'generally' assertions formally, we introduce the
new operator  and express birds 'generally' fly"
by v F(v). To give precise meaning to such
assertions, we extend the usual notions by
providing a family F of 'important' sets and

stipulate that v F(v) is to mean "the set
{ b  B : F(v) } of flying birds is in the family F"
as a rigorous counterpart for "the set of flying
birds is an 'important' set". To reason about such
'generalized' assertions in a formal manner, we
will set up a deductive system by extending
(conservatively) the classical first-order predicate
calculus. This logic is related to default logic [1]
and its variants [2, 3], as indicated by benchmark
examples, which was one of motivations for the
introduction of some related systems [4, 5]. But,
they are quite different logical systems, both
technically and in terms of intended
interpretation [6, 7].

In this paper, we consider 'generally' in the
sense of 'most' and examine a logic with
generalized quantifiers on filters similar to
ultrafilter logic [6, 8]. The aim is indicating how
some ideas and results about ultrafilter logic can
be adapted to filter logic. The structure of this
paper is as follows. We begin by motivating the
usage of filters for capturing an intuitive idea of
'generally'. Next, we consider a basic (unsorted)
framework: we introduce our logic for 'generally',
in section 3, and examine its properties, such as
completeness, in section 4. Some interesting
situations may require assertions relative to
several universes, involving "most birds" and
"most penguins" for instance, which we take up
in section 5, where we motivate ideas concerning
'relative generally' and introduce our sorted
framework for reasoning about versions of
'generally' relative to various universes.

2 On 'Generally' and 'Negligible'
We will now indicate how one can arrive at
filters [9] as capturing an idea of ‘generally’. The
approach is based on the familiar intuition of
'generally' as "all but for a 'negligible' set of
exceptions", but we also employ some related,
and more basic notions [10].



We will first motivate and outline our
approach to making precise a notion of
'generally'. Since we shall be dealing with local
qualitative notions, we will prefer to use names
like 'important' and 'negligible'. In the sequel, we
will indicate that filters [9] are appropriate for
giving precise counterparts for such notions. The
intuition of 'generally' as "all but for a 'negligible'
set of exceptions" suggests understanding
"objects 'generally' have a given property" as "the
exceptional objects (failing to have this property)
form a 'negligible' set. If we understand
'negligible' as "fit to be neglected or discarded", it
appears reasonable to say that two sets are
'almost as important' when their difference (i. e.
the part where they differ) is negligible. The
difference is the so-called symmetric difference:
X∆Y := (X-Y) ≈ (Y-X).

We can now put forward some postulates
about these notions (based on common sense and
ordinary understanding), namely "Sets with
negligible symmetric difference are almost as
important"; "Subsets of negligible sets are
negligible"; "Sets almost as important as
negligible ones are negligible"; "The empty set 
is negligible"; and "The universe V is not
negligible" [10].

In virtue of these five postulates, the family of
negligible sets forms a proper ideal [9].
Conversely, each proper ideal is a family of
subsets satisfying our five postulates. Thus, the
interpretation of "objects 'generally' have a given
property ϕ" as "the set of objects failing to have
property ϕ is negligible" can be seen to amount to
"the set of objects having ϕ belongs to a given
filter" (the family F of sets with negligible
complements).

3 A Logic for 'Generally'
Our logic for 'generally' adds to classical first-
order logic a generalized quantifier  for
expressing it. We now examine this logic Lωω(F):
its syntax, semantics and axiomatics.

Given a signature ρ, we use L(ρ) for the usual
first-order language (with equality +) of signature
ρ, and L (ρ) for the extension of L(ρ) by the new
operator . The formulas of L (ρ) are built by the
usual formation rules and the new variable-
binding formation rule for generalized formulas:
for each variable v, if ϕ is a formula then so is

v ϕ. Other syntactic notions, such as substitution
(ϕ(t)), can be easily adapted [11, 12].

To illustrate the expressive power of such
languages with , consider a signature with a
binary predicate L (standing for 'loves'). Some
assertions expressed by means of  are: "people
generally love somebody" by x ∃y L(x,y),
"somebody loves people in general" by
∃x y L(x,y), "people generally love everybody"
by x ∀y L(x,y), and "people generally love each
other" (in the sense "most people love most
people") by x y L(x,y).

The semantic interpretation of our logic
Lωω(F) is provided by enriching first-order
structures with filters and extending the
definition of satisfaction to the new quantifier .

A filter structure AF = ( A , F ) for signature ρ
consists of a usual structure A for ρ together with
a filter F over the universe A of A. We extend the
Tarskian definition of satisfaction of a formula in
a structure under assignment a to its (free)

variables as follows: we define AF p v ϕ(u,v) [a]

iff the set { b  A : AF p ϕ(u,v) [ a,b ] } is in F.

Satisfaction of a formula hinges only on the
realizations assigned to its symbols. Other
semantic notions, such as reduct and model

(AF p Γ), are as usual [11, 12]; also the notion of

filter consequence is as expected: Γ pF τ iff AF p τ
whenever AF p Γ (likewise for validity).

We will now formulate a deductive system for
our logic by adding schemata (coding properties
of filters) to a calculus for classical first-order
logic. We set up a deductive system for filter
logic by taking a sound and complete deductive
calculus for classical first-order logic, with
Modus Ponens (MP) as the sole inference rule (as
in [11]), and extending its set Α(ρ) of axiom

schemata by adding a set Φf(ρ) of new axiom

schemata to form Αf(ρ) := Α(ρ) ≈ Φf(ρ). This set

Φf(ρ) consists of all the generalizations of the
following five schemata (where ϕ, ψ and θ are
formulas of L (ρ)):
[∀ ]: ∀v ϕ ∅ v ϕ; [ ∃]: v ϕ ∅ ∃v ϕ;
[ ]: ( v ψ  v θ ) ∅ v (ψ  θ );
[∅ ]: ∀v ( ψ ∅ θ ) ∅ ( v ψ ∅ z θ);
[ ν]: v ϕ(v) ∅ u ϕ(u), for a new variable u.

These schemata express properties of filters,
with [ ν] covering alphabetic variants. Other
usual deductive notions, such as (maximal)
consistent sets, witnesses and conservative
extension [11, 12], can be easily adapted. Filter



derivations are first-order derivations from the

filter schemata: Γ of ϕ iff Γ ≈ Αf(ρ) o ϕ. Hence,
we have monotonicity, and substitutivity of
equivalents.

As an example, consider the following facts
about a universe of people: "people generally
oppose those in conflict with any one with whom
they sympathize", expressed by the sentence

x ∀y z [ (S(x,y)  C(z,y) ) ∅ C(x,z) ], and "people
generally sympathize with Bill", expressed by

x S(x,b). Then, one can infer the sentence
x z [  C(z,b) ∅ C(x,z) ], i. e. "people generally

oppose those in conflict with Bill".

4 Filter Logic
We shall now establish some properties of filter
logic, including soundness and completeness of
the deductive system with respect to filter
consequence.

Our deductive system provides a sound and
complete deductive calculus for reasoning about

assertions involving 'generally': Γ of τ iff Γ pF τ.

Soundness ( of ∏ pF) is easily established as

usual. For completeness (pF ∏ of), we can adapt
Henkin's well-known proof for classical first-
order logic [11, 12, 13], by providing an adequate
filter by means of witnesses. We proceed to
outline how this can be done (cf. [6, 8]).

Given a consistent set Γ in L (ρ), extend it to a
maximal consistent set Σ in L (ρ*), with
witnesses in set C of new constants for the
existential sentences of L (ρ*), where ρ* := ρ ≈ C.
We form the canonical structure H, for signature
ρ*, with universe H, as usual, and provide a
filter, by means of the formulas of language
L (ρ*) with a single free variable, as follows.
Considering the set represented within Σ by
formula ϕ(v) of L (ρ*), namely

ϕ(v)Σ:= { t / 0Σ  H : ϕ(t)  Σ }, we form the
family of provably important subsets of H:

Σ := { ϕ(v)Σ ∏ H : v ϕ(v)  Σ }. By our axioms,

this family Σ has the finite intersection property,

so its closure FΣ ∏ (H) under supersets is a

filter. We use this filter FΣ on H to expand the

canonical structure H to a filter structure

HFΣ := ( H , FΣ ) for ρ*. We can now show, by

induction, that HFΣ p τ iff τ  Σ, for each sentence
τ of L (ρ*). The inductive step for the new

quantifier , namely, for a sentence v ϕ
(HFΣ p v ϕ iff v ϕ  Σ) follows from the crucial

property ϕ(v)Σ  Σ iff ϕ(v)Σ  FΣ (due to schema

[∅ ]).
We thus have a Löwenheim-Skolem Theorem

for our filter logic Lωω(F).

Löwenheim-Skolem Theorem for filter logic.

Each of -consistent set Γ of sentences of L (ρ) has

a filter model MF with cardinality at most that of
the language: | M | ≤ | L (ρ) |.

Hence, we have the desired completeness
result for our filter logic.

Theorem. The deductive system of is complete

with respect to the consequence pF: Γ of τ
whenever Γ pF τ.

We now examine other metamathematical
properties of our filter logic Lωω(F) for
'generally'. We have a sound and complete
deductive system for Lωω(F). As usual, such a

result transfers the finitary character of of to the

compactness of pF. Thus, our logic is a proper
extension of classical first-order logic with
compactness and Löwenheim-Skolem properties.
Also, Lωω(F) has some other connections with
classical first-order logic Lωω: its
conservativeness over Lωω and the universality of

-consequences of first-order theories.

Proposition. Consider a set ∆ of sentences and a
formula θ of L(ρ).

a) Conservativeness of Lωω(F) over Lωω:

∆ o θ iff ∆ of θ.

d) Generalized consequences: ∆ of v θ iff

∆ o ∀v θ and ∆ of  v θ iff ∆ o  ∃v θ.
Proof outline. Any nonempty set can be extended
to some proper filter.

Item (b) corroborates that 'generally' requires
explicit information, otherwise it reduces to
classical quantification (only the universe can be
guaranteed to be in every filter).
Example. Consider consistent theories with
information about a universe of birds.
a) Consider a consistent purely first-order theory.
Assume that one knows that "some birds fly",
"every bird is a biped with beak", and "flying
birds have wings". Then, one does not know that
"birds generally do not fly", i. e. ∆ Of v  F(v).
Also, not knowing that "all birds fly"



(∆ O ∀v F(v)), one does not know that "birds
generally fly" (∆ Of v F(v)).

b) Consider a consistent theory Γ with
generalized information. Assume that, besides
"all feathered winged birds fly", one knows that
"birds generally have wings" and "birds generally
have feathers". Then, one concludes that "birds

generally fly": Γ of v F(v)).

5 Relative 'Generally'
We shall now examine the idea of having a
notion of 'generally' relative to a universe: how it
arises and can be formulated as well as some
related issues (cf. [8]). We will first indicate how
the proper expression of "relative generally"
assertions brings about the idea of a notion of
important with respect to each universe, leading
to its natural formulation in a sorted version of
filter logic. Then, the need for establishing some
connections while blocking others leads to
comparing such relative concepts. Finally, these
ideas will be incorporated into a sorted
framework for reasoning about relative generally.

5.1 Basic Ideas

Our generalized quantifier  may exhibit
somewhat unexpected behavior in some cases.
We shall now examine these undesirable side-
effects and propose a way to overcome this
difficulty.

The generalized quantifier  is meant to
capture the idea of holding generally, i. e. for
'most' of objects of the universe. Sometimes we
wish to express the idea of holding generally over
a given subset of the universe, i. e. for 'most'
objects of a given sub-universe. We now examine
the expression of such relative generally
assertions.

Over a universe B of birds, we express "birds
generally fly" by v F(v). How are we to express
relative generalized assertions, like "eagles
generally have wings" or "penguins generally
have beaks"? By analogy with the classical
quantifiers, relativization is an apparently natural
suggestion: express "M's generally are N's" by

v [ M(v) ∅ N(v) ]. Unfortunately, relativization
fails to be adequate for expressing 'relative
generalized' assertions, due to the behavior of the
quantifier .

As an example to illustrate this issue, consider
expressing some facts about birds by

relativization: "all penguins are winged birds" by
∀v [ P(v) ∅ W(v) ], and "penguins generally do not
fly" by v [ P(v) ∅  F(v) ]. From these two
sentences, one concludes v [ W(v) ∅  F(v) ],
which would be read as "winged birds generally
do not fly". Now, the two given premises appear
to express reasonable facts. On the other hand,
the conclusion, as read, does not look so
reasonable. This example indicates that
relativization fails to express the intended idea.
The reason comes from neglecting the relative
aspect.

For a formula v [ M(v) ∅ N(v) ] the reading
"M's generally are N's" is not appropriate. For,
one must bear in mind that what this does assert
is "for most objects a, if M(a) then N(a)". A
natural approach to overcome this problem, thus
expressing 'relative generally', rests on relative
notions of 'important': each given universe has its
own relative notion of 'important' subsets. This
idea may be formulated by providing a proper
filter FS over each universe S. With such relative

notions of 'important', we can paraphrase "M's
generally are N's" as "most M's are N's" meaning
that the set { a  M : N(a) } is 'almost as important
as' the universe M, i. e. M ↔ N ♠ M or
M ↔ N  FM.

A many-sorted approach can provide a
framework for formulating the idea of distinct
notions of 'important' for the universes, where
one assigns proper families corresponding to
these relative notions of important. We shall now
examine sorted versions of our logics for
'generally'. The basic idea is relativizing to sorts
the previous (unsorted) concepts.

We consider many-sorted signatures, where
the extra-logical symbols, as well as variables,
come classified according to sorts [11].
Quantifiers are relativized to sorts, as expressed
in the formation rules: for each variable v over
sort s, if ϕ is a formula in L (ρ), then so are
(∀v:s) ϕ, (∃v:s) ϕ and ( v:s) ϕ. A filter structure

AF for S-sorted signature ρ is an expansion of an
S-sorted (first-order) structure A for ρ, obtained
by assigning to each sort s of signature ρ a filter
Fs over the universe A[s] of sort s (giving the

important subsets of A[s]). The definition of
satisfaction becomes relativized to sorts

accordingly: AF p v ϕ(u,v) [a] iff the set

{ b  A[s] : AF p ϕ(u,v) [ a,b ] } is in Fs. The filter



axiom schemata in the set Φf(ρ) become sorted as
well

As in classical first-order logic, the sorted and
unsorted versions are quite similar. So, the results
in section 4 (e. g. soundness and completeness)
carry over to the sorted version, by relativizing to
sorts the previous arguments.

5.2 Sorted Framework

We now take a closer look at the proposal of
employing distinct notions of important subsets.

We will examine how the need for
establishing some connections while blocking
others leads to comparing these relative notions
of important sets.

The next example shows how some
(undesired) conclusions can be blocked.
Example. Given that "All penguins are birds"
(P ∏ B), consider the assertions σ:"birds
generally fly" (the flying birds form an important
set of birds, i. e. B ↔ F  FB) and τ:"penguins

generally fly" (the flying penguins form an
important set of penguins, i. e. P ↔ F  FP). Now,

neither σ entails τ (since we may even have
P ↔ F = ), nor does τ entail σ (since P ∏ B may
very well be a negligible set of birds), if the
relative notions of important sets are not
connected.

This example illustrates the idea of
independent notions of important subsets. If the
set of penguins is not an important set of birds
(P ∏ B not almost as important as B), then a set
X ∏ P (e. g., of non-flying penguins) may be an
important set of penguins without being an
important set of birds.

The next example shows how some (desired)
conclusions can be achieved.
Example. Given that "All winged birds are birds"
(W ∏ B), consider the assertions σ:"birds
generally fly" (as before B ↔ F  FB or

B ↔ F ♠ B) and µ:"winged birds generally fly"
(the flying winged birds form an important set of
winged birds, i. e. W ↔ F  FW or W ↔ F ♠ W).

Given also that "birds generally have wings"
(W ♠ B), the set B − W of exceptional wingless
birds is a negligible set (of birds). So, it appears
intuitively plausible that the important subsets of
W are the relativizations W ↔ Y of the important
subsets Y of B. Thus, we shall also assume the
coherence principle: for any subset Y ∏ B,

W ↔ Y ♠ W iff Y ♠ B. In the presence of this
principle, assertions σ and µ become equivalent.

The two preceding examples illustrate the
following ideas. Given S ∏ T and a proper filter
FS over S, consider the relativizable complex

TFS := { Y ∏ T : S ↔ Y  FS }. If S  FT (say

because ( T − S )  FT), then we need an

independent notion FT of important subsets of T.

If S  FT, then relativizable complex TFS is a

filter over S, which we may take as FT, if we

wish to enforce coherence inheritance: for every
subset Y ∏ T, S ↔ Y  FS iff Y  FT.

We shall now consider comparison of
universes, with distinct notions of important
subsets, in a sorted framework. We shall examine
how to formulate some ideas related to sub-
universes and coherent inheritance in a many-
sorted approach.

In our sorted framework, sorts are unrelated:
we have equality only over a sort, rather than
between distinct sorts. Nevertheless, we can
express some relationships among sorts by means
of appropriate injections. The idea is that an
injection i from s to t establishes a bijection from
its domain s onto its image i[s], the latter being a
subset of t. To express that s is a subsort of t, we
resort to a unary function i from s to t together
with an axiom asserting its injectivity [14]. This
yields transitivity of subsorts.

We now formulate the previous coherence
inheritance principle for an injection i : s ∅ t,
where the image i[s] is an important subset of t.
Then, the non-image t − i[s] is a negligible subset
of t, where the distinction between a set Z ∏ t and

its pre-image i−1[Z] is confined. So, we may
consider Z ∏ t as an important subset (Z  Ft) of t

iff i−1[Z] is an important subset of s (i−1[Z]  Fs).

Now, given i : s ∅ t and a formula ϕ(z) with
variable z over t, we can express "objects of t
generally are in the image" by the sentence χi:

( z:t) (∃x:s) z+i(x), express "objects of t generally
have property ϕ" by ϕt: ( z:t) ϕ(z), and use ϕs:

( x:s) ϕ(i(x)) to express "objects of s generally
give objects in t with property ϕ". This leads to
the coherent inheritance schema [  i : s ∏ t], with
instances (  i : s ∏ t / ϕ) as χi ∅ ( ϕt × ϕs ).



Let us examine our preceding examples in this
sorted formulation.
Example. Consider three sorts: b (for birds), w
(for winged birds) and p (for penguins) and a
unary predicate F (for flies) over sort b, with
j : w ∅ b and k : p ∅ b.
a) Considering all winged birds as birds, assume
( z:b) (∃x:w) z+j(x) {"birds generally have
wings"}. Then, instance (  j : w ∏ b / F(z)) of the
inheritance schema yields the equivalence
between ( z:b) F(z) {"birds generally fly"} and
( x:w) F(j(x)) {"winged birds generally fly"}. We
thus see that, as the winged birds form an
important set of birds, "generally flying" is
inherited both downwards and upwards.
b) Considering all penguins as birds, assume
( z:b) F(z) {"birds generally fly"}. Now, if we
have ( z:b) (∃y:p) z+k(y) {"birds generally are
penguins"}, instance (  k : p ∏ b / F(z)) will yield
( y:p) F(k(y)) {"penguins generally fly"}; but
otherwise this conclusion is not forced upon us.
In fact, from the sentence ( x:p)  F(k(y))
{"penguins generally do not fly"}, the instance
(  k : p ∏ b /  F(z)) of the schema can be seen to
yield  ( z:b) (∃y:p) z+k(y) {"it is not the case
that birds generally are penguins"}.

This example illustrates how the coherence
inheritance schema provides uniform control
based on the relative importance of the sorts.

6 Conclusion
We have examined monotonic logical systems
with generalized quantifiers over filters, which
provide rigorous bases for qualitative reasoning
with vague notions, such as 'generally' in the
sense of 'most'. The unsorted logical system is a
conservative extension of classical first-order
logic, with which it shares several properties.
Some situations, however, require assertions
relative to several universes, leading to the idea
of 'relative generally' and our sorted framework
for them. We can similarly introduce generalized
quantifiers for the dual notion of 'negligible'.
Modal versions of these logics can also be
contemplated.

This logical system, though related to default
logics, are quite different, both technically and in
terms of intended interpretation [7]. Our filter
logic belongs to a family of closely related
systems with generalized quantifiers for
qualitative reasoning about vague notions,
including ultrafilter logic [6, 8, 15]. These

systems appear to have interesting connection
with fuzzy logic [16, 17] (e. g. expressing 'very
tall' by "taller than most"), as well as with
empirical reasoning [18], which suggest the
possibility of other applications [6, 8]. They are
undergoing further investigation [19, 20]. For
instance, one can adapt the natural deduction
system for ultrafilter logic [21] to our filter logic
and similar ones.
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